Pratt & Whitney Rocketdyne Receiver Overview

Kris Miner, Project Team Lead Program Review Meeting with DOE

Page 2

- The key technical risk with building molten salt solar power towers is building larger receivers
 - This project is helping to resolve that risk by gaining experience with the design, fabrication, and testing of large receivers
- Validate manufacturability of large scale molten salt receiver panel
- Confirm operation in prototypic solar flux
- Goal of reducing LCOE of solar power plant

Receiver Panels are the Key Component

Fabrication at Pratt & Whitney Rocketdyne

Installation at Barstow, Calif.

"...to make CSP cost competitive by demonstrating larger receiver design, enabling economy of plant scale to reduce LCOE. A power tower of 100 MWe or more can achieve under 7 cents/kWh with storage (12-17 hours) by 2020."

- Design, fabrication and test a sub-scale receiver panel
 - Prototypic of an advanced large receiver system
- Confirm panel size and perform preliminary design
 - Size panel to limitations of National Thermal Solar Test Facility (NSTTF) at SNL
 - ~10 ft. of active length, 25 ft. in overall length, width ~45 inches.
- Comprehensive panel design
 - Structural, thermal-fluid analyses and materials engineering
 - Detailed component specifications
 - Manufacturability assessment
- Panel fabrication, production run on repetitive components
- Panel testing at NSTTF, on-sun with molten salt
- Evaluation of future production scenarios and costs

Activities, Planned Milestones & Budget

2009 Progress Report

- Completed Phase 1 during the first quarter
 - Panel sizing
 - Preliminary design
 - Cost evaluation
 - Go forward plan
 - Submitted Phase 1 report summarizing progress
- Started Phase 2 in last quarter
 - Revisiting design innovations
 - Finalizing 3D model

Future Activities

2010 Planned Activities

- Complete Phase 2 work
 - Comprehensive design and cost estimates
 - Manufacturing assessment
 - Long lead procurement
 - Design Review and submit Phase 2 report
- Initiate Phase 3
 - Complete remaining procurement
 - Start fabrication of panel

2011 and Beyond Ideas

- Complete fabrication and ship to NSTTF
- Install and complete testing design validated
- Design and fabricate full scale (~500 MWt) receiver systems incorporating lessons learned from this project

Link Project to Program Plans & Goals

- Forecast achievement of utility CSP cost targets
 - Selecting new materials to lower fixed costs
 - Lowering the complexity of the design to achieve ease of manufacturing and cost reduction
 - Utilizing faster and less expensive fabrication techniques
 - Implementing design decisions and creating on the tower repair techniques that will lower the variable costs of plant operation
- Project addresses barriers:
 - Large-size
 - Capital cost
 - Reliability
 - Performance
 - Technology risk

- Current status
 - Basic Design is complete
 - Need to finish with design details
 - Start drawing creation
 - Working on test plan and interface control drawing
 - Working with vendors for part procurement

Header Assembly

- Snubbers maintain header location while allowing thermal growth
- Spring hanger helps support the floating header and tubes
- Turnbuckle supports the fixed header and allows local thermal growth

Floating Header

Fixed Header

Thermal Shields

Test Plan Overview

- New receiver molten salt loop to be designed and fabricated at Sandia
- Test operating conditions for receiver:
 - Heat flux of 1,050 SUNS (1,050 kW/m²)
 - Receiver will operate with:
 - Molten Salt Temperatures 550° F to 1,050° F

Sandia Test Facility

Receiver to be mounted on top of the tower

Conclusion

- Design is progressing well
 - Finishing details of the design
 - Starting process of creating drawings
 - Creating interface control drawing
- Engaging Sandia in communication so that integration of the receiver and test facility go smoothly

