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Evaluation of Cycles for Hydrogen Production
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High-Temperature Electrolysis for Hydrogen
Production - Materials

Drivers for High-temperature electrolysis:

- Oxygen is the charge carrier, rather than hydrogen — this
requires high temperatures, but no use of strategic metals

- Low-footprint for this system, it is adaptable to many scales
- Highest efficiency for electrolysis



Higher temperatures for steam electrolysis are
one contributor to reduced power demands
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High-Temperature Electrolysis for Hydrogen
Production - Materials

(1) coordinate with the experimental work at INEEL that will
demonstrate the improvements in performance for a high-
temperature steam electrolysis system operating at up to 1,000
K and assure that the data required to conduct a detailed
process design study are linked into an ASPEN-based process
design

(2) consider the issues affecting the long-term performance of
electrolyzer cells in this service

(3) consider the requirements for producing and handling
reagent-grade water that will be employed for these cells,
starting from a base of available non-potable water at the
production facility site



High-Temperature Electrolysis for Hydrogen
Production - Materials

(4) examine the technological features as they link to process
economics, surveying what would be needed to achieve
commercial viability using these technologies, particularly the
appropriate scale of operations

(5) perform life-cycle emissions evaluations to quantify the
reductions that can be achieved by using these technologies.



OBJECTIVES - High Temperature Electrolysis

Optimize Hydrogen Production
- Choice of process
- Optimize materials and operating conditions
Optimize Overall Plant System
- Integrate selected process into balance of plant
- Heat Recuperation from product streams

- Perform a energy/pinch analysis
- Perform an overall efficiency analysis of plant.
Cooperative program with INEEL



Linkage of steam-electrolysis to a solar energy
system will improve scalability and economics
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Multiple paths for linking steam electrolysis to
renewable energy are being pursued

Hirsch and Steinfeld, Paul Scheer Institute
Hydrogen Energy 29, 2004 47-59
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Computational Fluid Dynamics

Electrochemistry Model
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SOFC/SOEC Modeling Overpotential
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Button and Stack SOFC/SOEC Experiment
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Availlable Commercial CFD Codes

» Code Selection
v Femlab
» Calculations based on current
v Star-CD |::> > Current density establishes rate of
oxygen transport through electrolyte
v Fluent
« STARCD

e 350 Node Linux Parallel Cluster at ANL
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V-l Characteristics

E: E +(r1+r2T)
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E operating cell voltage

E,., reversible cell voltage

R ohmic resistance of e ectrolyte

s,t coeff for overvoltage on electrodes

Stand-Alone Power Systems For the Future: Optimal Design,
Operating & Controle of Solar-Hydrogen Energy Systems, PhD
thesis O. Ulleberg. 1998 Norwegian University of Science and
Tch.
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Ohmic Losses

*Area Specific Resistance (ASR)
*ASR = thickness/conductivity(0)
*\Voltage Loss due to Ohmic resistance
V=1*ASR
Electrolyte offers considerable resistance
*0(YSZ)=0.3685 +0.002838exp(10300/T)
*Electrodes offer relatively small resistance and are given in literature.
‘Many treat as constants
«Anode: 0.0014 U-cm
Cathode: 0.0186 U-cm

Interfacial Resistances: ~0.1 U-cm
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Butler —Volmer Aproximation a=0.5 most

assume for fuel cells

® Electrode charge-transfer overpotential
- Combined for both electrodes
» Thres adjustable parameters for calibration

i P = E:';.p. act i

@ = adjustable parameter

i = average cell current density

i, = exchange current density

P =pre —exponential (adjustable)

E_. =activation energy (adjustable)
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INEEL SUPPLIED V-I| Curves
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Cathode Concentration Overpotential

Using Fick Law of Diffusion
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CFD Simulations will be a very necessary
elements of SOEC development
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System Integration

Extra componentsneeded to
-Gases need to be circulated through the stack
-Compressors, pumpsor blowers
-Electric motorsto drive pumps, blowers and
Compr essor

-Fuel cell needsto connected to load like DC/DC
converter for ssmple voltage regulator as used by
INEEL expt.

-Cooling system, air-preheater
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Low-temperature Electrolysis —1 kg/h H,

Housing/Forecourt dispenser (NEPA Compliant)
Electric Power Transformer

Water System-manifolding

Electric Power Invertor/Conditioning
Electrolytic Céells ($kW)

Hydrogen Compression (ambient - 100 psl)
Hydrogen Compression (100 - 5,000 psi)
Hydrogen dispensing (5,000 psi)

800kW-Natural Gas Compression/Hythane (50 - 3,600 psi)
800kW-Hythane dispensing (3,600 psi)

Oxygen system manifolding

Controls/Auxiallry

Cooling fan

Profit

TOTAL

cost
$12,000
$14,000
$1,250
$45,932
$143,199
$20,000
$78,678
$17,984
$29,974
$11,990
$2,500
$25,585
$1,250
$60,657
$465,000

H2 (KW-HHV/kg) =

39.447

cost basis  power (kW)

020 W -5%

085 W -5%
$2,650 $kW 73%

15%

7.0%
1.4%
15.0%
Power (KW aetric)

3.50
0.10
2.70
54.04
1.05
3.60
0.50
2.09
0.50
0.15
0.80
0.98

70.00
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High-T Electrolysis Balance of Plant

Dry, High Pressure H2
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High-temperature Electrolysis — 1 kg/h H,

Housing/Forecourt dispenser (NEPA Compliant)
Electric Power Transformer

Water System-manifolding

Steam system

Electric Power Invertor/Conditioning
Electrolytic Cells ($/kW)

Hydrogen Compression (ambient - 100 psi)
Hydrogen Compression (100 - 5,000 psi)
Hydrogen dispensing (5,000 psi)
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi)
800kW-Hythane dispensing (3,600 psi)

Oxygen system manifolding

Controlg/Auxiallry

Moisturedryers

Cooling fan

Profit

TOTAL

Cost
$18,000
$10,000

$500

$8,000
$30,820
$123,282
$27,000
$78,678
$17,984
$29,974
$11,990
$20,000
$25,076
$2,150
$875
$60,671
$465,000

H2 (kW-HHV/kg) = 33.721
Cost basis  Power (kW)
020 $W -5% 2.50
0.10
0.00
08 $W -5% 1.81
$3,400 $KkW 93%  36.26
1.05
15% 3.60
0.50
2.09
0.50
0.70
7.0% 1.20
0.00
1.4% 0.71

15.0%
Power (KW youri0  51.02
Power (KW g@i0s0x)  10.66
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Capital Cost Comparison

Housing/Forecourt dispenser (NEPA Compliant)
Electric Power Transformer

Water System-manifolding

Steam system

Electric Power Invertor/Conditioning
Electrolytic Cdls ($/kW)

Hydrogen Compression (ambient - 100 psi)
Hydrogen Compression (100 - 5,000 psi)
Hydrogen dispensing (5,000 psi)
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi)
800kW-Hythane dispensing (3,600 psi)

Oxygen system manifolding

Controls/Auxiallry

Moisturedryers

Cooling fan

Profit

TOTAL

High-T
$18,000
$10,000

$500
$8,000
$30,820
$123,282
$27,000
$78,678
$17,984
$29,974
$11,990
$20,000
$25,076
$2,150
$875
$60,671

$465,000

Low-T
$12,000
$14,000

$1,250

$45,932
$143,199
$20,000
$78,678
$17,984
$29,974
$11,990
$2,500
$25,585

$1,250
$60,657

$465,000
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Power use comparison

Housing/Forecourt dispenser (NEPA Compliant)
Electric Power Transfor mer

Water System-manifolding

Steam system

Electric Power Invertor/Conditioning
Electrolytic Cells ($/kW)

Hydrogen Compression (ambient - 100 psi)
Hydrogen Compression (100 - 5,000 psi)
Hydrogen dispensing (5,000 psi)
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi)
800kW-Hythane dispensing (3,600 psi)

Oxygen system manifolding

Controls/Auxiallry

Moisturedryers

Cooling fan

Profit

Power (KW geqtric)

Power (kWQ@losoK)

High-T

2.50
0.10
0.00
1.81
36.26
1.05
3.60
0.50
2.09
0.50
0.70
1.20
0.00
0.71

51.02
10.66

Low-T

3.50
0.10
0.00
2.70
54.04
1.05
3.60
0.50
2.09
0.50
0.15
0.80
0.00
0.98

70.00
0.00

25



Cross-Cutting Research Directions

» Membranes and Separation

p Ceramic membranes used for the separation of oxygen from air must
simultaneously achieve high-flux oxygen transport and equally large electronic
transport, and, at the same time, must survive the extreme conditions of the
membrane reactor

» high temperatures
B reactive environments
» highly reducing conditions on one surface of the membrane
» Characterization and measurement techniques
» Advanced Photon Source
p» Electron Microscopy

»Theory,modeling and simulation
» Diffusion Models
» Continued Interdisciplinary Effort
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Issues with High-Temperature Electrolysis

» Desirable for product hydrogen to be

produced at high pressures
- Robust cell design necessary

» Electrical energy intensive

- High ohmic losses due to thick
electrolyte

- High strength design needed

- High overpotential on oxygen
electrode

- High overpotential and degradation
of steam/hydrogen electrode

- High thermodynamic potential to
overcome
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Conclusions — High Temperature Electrolysis

Capital Costs appear competitive

Physical plant footprint will be lager

Premium (Electric) Power demands are much lower
Premium heat demands now needed
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