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Evaluation of Cycles for Hydrogen Production



3

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

High-Temperature Electrolysis for Hydrogen 
Production - Materials

• Drivers for High-temperature electrolysis:
- Oxygen is the charge carrier, rather than hydrogen – this 

requires high temperatures, but no use of strategic metals
- Low-footprint for this system, it is adaptable to many scales
- Highest efficiency for electrolysis
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Higher temperatures for steam electrolysis are 
one contributor to reduced power demands

Minimum H2O Dissociation Power
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High-Temperature Electrolysis for Hydrogen 
Production - Materials

• (1) coordinate with the experimental work at INEEL that will 
demonstrate the improvements in performance for a high-
temperature steam electrolysis system operating at up to 1,000 
K and assure that the data required to conduct a detailed 
process design study are linked into an ASPEN-based process 
design

• (2) consider the issues affecting the long-term performance of 
electrolyzer cells in this service

• (3) consider the requirements for producing and handling 
reagent-grade water that will be employed for these cells, 
starting from a base of available non-potable water at the 
production facility site
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High-Temperature Electrolysis for Hydrogen 
Production - Materials

• (4) examine the technological features as they link to process 
economics, surveying what would be needed to achieve 
commercial viability using these technologies, particularly the 
appropriate scale of operations

• (5) perform life-cycle emissions evaluations to quantify the 
reductions that can be achieved by using these technologies.
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OBJECTIVES – High Temperature Electrolysis

• Optimize Hydrogen Production
- Choice of process
- Optimize materials and operating conditions

• Optimize Overall Plant System
- Integrate selected process into balance of plant
- Heat Recuperation from product streams

- Perform a energy/pinch analysis
- Perform an overall efficiency analysis of plant.

• Cooperative program with INEEL
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Linkage of steam-electrolysis to a solar energy 
system will improve scalability and economics

Hirsch and Steinfeld, Paul 
Scheer Institute in 

Hydrogen Energy 29, 2004 
47-59

Demonstrates very 
encouraging progress that 
could be directly applied to 
steam electrolysis
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Multiple paths for linking steam electrolysis to 
renewable energy are being pursued

Hirsch and Steinfeld, Paul Scheer Institute

Hydrogen Energy 29, 2004 47-59
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Electrochemistry Model

Thermodynamics Kinetics Mass Transport Energy 
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SOFC/SOEC Modeling Overpotential
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Button and Stack SOFC/SOEC Experiment

Taken From INEEL report  2004, Steve Herring 
and Jim O’Brien, “High Temperature Solid 

Oxide Electrolyser System”

Porous Anode, Strontium-doped Lanthanum Manganite

Gastight Electrolyte, Yttria-Stabilized Zirconia

Porous Cathode, Nickel-Zirconia cermet
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Available Commercial CFD Codes

• Code Selection

ü Femlab

ü Star-CD

ü Fluent

• STARCD 

• 350 Node Linux Parallel Cluster at ANL

Ø Calculations based on current
Ø Current density establishes rate of 

oxygen transport through electrolyte
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V-I Characteristics 
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Ohmic Losses
•Area Specific Resistance (ASR)

•ASR = thickness/conductivity(ó)

•Voltage Loss due to Ohmic resistance

•V=i*ASR

•Electrolyte offers considerable resistance

•ó(YSZ)=0.3685 +0.002838exp(10300/T)

•Electrodes offer relatively small resistance and are given in literature.

•Many treat as constants

•Anode: 0.0014 Ù-cm

•Cathode: 0.0186 Ù-cm

•Interfacial Resistances: ~0.1 Ù-cm
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Butler –Volmer Aproximation â=0.5 most 
assume for fuel cells
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INEEL SUPPLIED V-I Curves
-1.8

-1.5

-1.2

-0.9

-0.6 -1

-0.7

-0.4

-0.1

0.2

-0.6 -0.4 -0.2 0 0.2

sweep 1
sweep 2
sweep 3
sweep 4
sweep 5
sweep 6

ce
ll

 p
o

te
n

ti
al

, E
 (

V
)

cell pow
er density, p (A

/cm
2)

current density, i ( A/cm2)

fuel cell modeelectrolysis mode

Q
s, H2

Q
s, Ar

T
dp,i

(C)T
frn

(C)sweep

40.1141278501

40.1141278002

40.114135.58503

40.114135.58004

40.114138.38505

40.114138.58006

Test Conditions

power density

cell potential

0



18

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Cathode Concentration Overpotential
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CFD Simulations will be a very necessary 
elements of SOEC development
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System Integration

Extra components needed to

-Gases need to be circulated through the stack

-Compressors, pumps or blowers

-Electric motors to drive pumps, blowers and 
compressor

-Fuel cell needs to connected to load like DC/DC 
converter for simple voltage regulator as used by 
INEEL expt.

-Cooling system, air-preheater
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H2 (kW-HHV/kg) = 39.447
cost power (kW)

Housing/Forecourt dispenser (NEPA Compliant) $12,000
Electric Power Transformer $14,000 0.20 $/W -5% 3.50

Water System-manifolding $1,250 0.10
Electric Power Invertor/Conditioning $45,932 0.85 $/W -5% 2.70

Electrolytic Cells ($/kW) $143,199 $2,650 $/kW 73% 54.04
Hydrogen Compression (ambient  - 100 psi) $20,000 1.05

Hydrogen Compression (100 - 5,000 psi) $78,678 15% 3.60
Hydrogen dispensing  (5,000 psi) $17,984 0.50

800kW-Natural Gas Compression/Hythane (50 - 3,600 psi) $29,974 2.09
800kW-Hythane dispensing (3,600 psi) $11,990 0.50

Oxygen system manifolding $2,500 0.15
Controls/Auxiallry $25,585 7.0% 0.80

Cooling fan $1,250 1.4% 0.98
Profit $60,657 15.0%

TOTAL $465,000 Power (kWelectric) 70.00

cost basis

Low-temperature Electrolysis – 1 kg/h H2
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High-T Electrolysis Balance of Plant
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High-temperature Electrolysis – 1 kg/h H2

H2 (kW-HHV/kg) = 33.721
Cost Power (kW)

Housing/Forecourt dispenser (NEPA Compliant) $18,000
Electric Power Transformer $10,000 0.20 $/W -5% 2.50

Water System-manifolding $500 0.10
Steam system $8,000 0.00

Electric Power Invertor/Conditioning $30,820 0.85 $/W -5% 1.81
Electrolytic Cells ($/kW) $123,282 $3,400 $/kW 93% 36.26

Hydrogen Compression (ambient  - 100 psi) $27,000 1.05
Hydrogen Compression (100 - 5,000 psi) $78,678 15% 3.60

Hydrogen dispensing  (5,000 psi) $17,984 0.50
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi) $29,974 2.09

800kW-Hythane dispensing (3,600 psi) $11,990 0.50
Oxygen system manifolding $20,000 0.70

Controls/Auxiallry $25,076 7.0% 1.20
Moisture dryers $2,150 0.00

Cooling fan $875 1.4% 0.71
Profit $60,671 15.0%

TOTAL $465,000 Power (kW electric) 51.02

Power (kWQ@1050K) 10.66

Cost basis
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Capital Cost Comparison

High-T Low-T
Housing/Forecourt dispenser (NEPA Compliant) $18,000 $12,000

Electric Power Transformer $10,000 $14,000
Water System-manifolding $500 $1,250

Steam system $8,000
Electric Power Invertor/Conditioning $30,820 $45,932

Electrolytic Cells ($/kW) $123,282 $143,199
Hydrogen Compression (ambient  - 100 psi) $27,000 $20,000

Hydrogen Compression (100 - 5,000 psi) $78,678 $78,678
Hydrogen dispensing  (5,000 psi) $17,984 $17,984

800kW-Natural Gas Compression/Hythane (50 - 3,600 psi) $29,974 $29,974
800kW-Hythane dispensing (3,600 psi) $11,990 $11,990

Oxygen system manifolding $20,000 $2,500
Controls/Auxiallry $25,076 $25,585

Moisture dryers $2,150
Cooling fan $875 $1,250

Profit $60,671 $60,657
TOTAL $465,000 $465,000
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Power use comparison
High-T Low-T

Housing/Forecourt dispenser (NEPA Compliant)
Electric Power Transformer 2.50 3.50

Water System-manifolding 0.10 0.10
Steam system 0.00 0.00

Electric Power Invertor/Conditioning 1.81 2.70
Electrolytic Cells ($/kW) 36.26 54.04

Hydrogen Compression (ambient  - 100 psi) 1.05 1.05
Hydrogen Compression (100 - 5,000 psi) 3.60 3.60

Hydrogen dispensing  (5,000 psi) 0.50 0.50
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi) 2.09 2.09

800kW-Hythane dispensing (3,600 psi) 0.50 0.50
Oxygen system manifolding 0.70 0.15

Controls/Auxiallry 1.20 0.80
Moisture dryers 0.00 0.00

Cooling fan 0.71 0.98
Profit

Power (kWelectric) 51.02 70.00

Power (kWQ@1050K) 10.66 0.00
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Cross-Cutting Research Directions
Ø Membranes and Separation

Ceramic membranes used for the separation of oxygen from air must 
simultaneously achieve high-flux oxygen transport and equally large electronic 
transport, and, at the same time, must survive the extreme conditions of the 
membrane reactor 

high temperatures 
reactive environments 
highly reducing conditions on one surface of the membrane 

Ø Characterization and measurement techniques
Advanced Photon Source
Electron Microscopy

ØTheory,modeling and simulation
Diffusion Models 

Continued Interdisciplinary Effort
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Issues with High-Temperature Electrolysis
Ø Desirable for product hydrogen to be 

produced at high pressures

- Robust cell design necessary

Ø Electrical energy intensive

- High ohmic losses due to thick 
electrolyte
- High strength design needed

- High overpotential on oxygen 
electrode

- High overpotential and degradation 
of steam/hydrogen electrode

- High thermodynamic potential to 
overcome



28

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Conclusions – High Temperature Electrolysis

• Capital Costs appear competitive
• Physical plant footprint will be lager
• Premium (Electric) Power demands are much lower
• Premium heat demands now needed


