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Concentrating Solar Power - Trough

Heat Collection Element Trough Collector
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Concentrating Solar Power - Tower

Heliostats
Salt Storage
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Other CSP/STE Systems
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CSP Applications
• Electricity and heat applications are near-term

– $16 Trillion energy infrastructure projected worldwide 
through 2030, 70% for electricity*

– Massive expansion possible: concrete, glass, steel

• Solar fuel applications are longer-term
“A challenge for the chemical sciences is to provide a 
disruptive solar technology to meet 10-20 TW of 
carbon-free power” 

-Nathan Lewis, Caltech

* IEA 2003 World Energy Investment Outlook Summary
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Performance Baseline
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Trough LEC Learning Curve
How low can it go?

SEGS Experience

LEC = 0.4959 MWe -0.226
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Molten Salt Power Towers can provide
high solar-only annual capacity factors (> 70%) 
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• “Around the clock” with 13 hrs of storage
• This design could provide steady power to an electrolyzer
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Thermal storage is inexpensive

Storage 
System

Installed Cost 
of Energy 

Storage for a 
220 MWe Plant 

($/kWhre)

Lifetime 
of 

Storage 
System 
(years)

Annual 
Round-trip 

Storage
Efficiency 

(%)

Maximum 
Operating 

Temperature 
(°°C)

Molten-salt 
power tower

15 30 >99 650

Battery 
Storage 
Grid 
Connected

500 to 800 5 to 10 76 Not 
Applicable
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Thermal storage also lowers cost

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ann. Capacity Factor

N
o

rm
al

iz
ed

 
E

n
er

g
y

 
C

o
st

6 hrs storage

13 hrs storage

Plants without cost-effective storage

Plants with cost-effective storage



15

• Spain leads the way 

• Eventually, PV prices offered to CSP …

• 5-10 plants promoted or in progress trough & 
tower

Oops, 
the 
other 
solar!

Planned Installations
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Dish and Engine Technology
• 25kW systems

– Over 25,000 Hours 
Of On-Sun Operating Time

– Over 125,000 Hours 
Of Chemical Fuel Operation

– 24.9 kW Peak Power
– 29.4% Peak Efficiency
– 95%+ Availability

• 10kW systems
– Potential to address off-grid and 

distributed applications
– Not a current emphasis
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Stirling Energy Systems 
Vision and Market

• Near term opportunities
• Large grid-tied energy 

production facilities
– Central plant reduces O&M 

costs
– High volume production early 

on allows faster cost 
reduction

– Aggressively pursue 
opportunities brought by 
RPS’s in Southwest US

• Longer term opportunities 
off-grid and distributed with 
fully mature products
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Planned Installations

• Six 25-kW dishes at Sandia Labs by Christmas 2004
• Ten dishes to be installed for APS in 2005
• Forty dishes scheduled for “showcase” plant in

early 2006. 
• Production of 1000 units/month starting as early as  

2007
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Sargent & Lundy
Due-Diligence Review of 

Parabolic Trough
and

Power Tower Technologies
May 2003
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S&L Work Scope

– Examination of trough and tower baseline technology 
assumptions (next plant)
• Relied heavily on SunLab and industry data

– Analysis of industry projections out to 2020
• Evaluated scale-up, technology improvements, experience 

learning

• Detailed review of cost and performance

• Assessment of R&D risk

– Assessment of the level of cost reductions likely to be 
achieved based on S&L experience.

– Perform a financial analysis to determine Levelized Cost of 
Energy (LEC) 
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S&L Summary Findings

– Trough  Levelized Energy Cost
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S&L Summary Findings
– Power Tower Levelized Energy Cost
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S&L Conclusions

– … it is S&L’s opinion that CSP technology is a proven 
technology for energy production

– There is a potential market for CSP technology

– Currently CSP electricity is more expensive than 
conventional fossil-fueled technology. 

• Early deployments will require incentives

• Significant cost reductions will be required to reach market 
acceptance

– Significant cost reductions are achievable assuming 
reasonable deployment of CSP technologies occurs

• 2 to 10 GW by year 2020
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Concluding Remarks

• This is a Solar-H2 Workshop … how about CSP 
hydrogen??

• Near term – H2 via Electrolysis
– Large central plants using trough, tower, and dish plants
– Locate first plants in SW deserts near large population centers to 

minimize transportation cost and losses
• Ample good locations near Los Angeles, Phoenix, and Las Vegas

• Longer term – H2 via Thermochemical cycle
– Higher solar-to-H2 efficiency
– Lower levelized H2-generation cost



25

Solar In (1000 oC)

H2SO4(g) >> SO2(g) + H2O(g) + ½ O2(g)    (850 oC)
SO2(aq) + 2H2O(l) >> H2SO4(aq) + H2(g)   (80 oC electrolysis) 

H2 Out

O2 Out

H2O In

Solar Out (600 oC)

Solar Thermo-Chemical H2 Plant

Sulfur-hybrid cycle
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Solar Thermo-Chemical H2 Plant

Sand Flow Valve

Acid In

Acid Out

Lift

Receiver

Hot Tank

Cold Tank

• Annual solar-to-H2 efficiency for thermochemical plant ~20%

• Annual solar-to-H2 efficiency for electrolyzer plant ~12%

•Using H2A

• Levelized H2 cost < $3/kg for power-tower thermochemical

• Levelized H2 cost > $4/kg for power-tower electrolysis


