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Introduction

Require cost effective materials, components & design
•Design simplicity
•Typically conventional silicon cells

Can utilize conventional materials & construction
•High concentration challenges not essential
•Reliability and durability derive from conventional approaches
•e. g. c-Si cells, encapsulation

Challenge is cost-competitive, reliable  LCPV technology

Calls for integrated optimization for reliability & lifetime
•Yielding lower cost and LCOE

Many LCPV efforts

Reflective efforts
Abengoa Solar NT

1.5 and 2.2X tracked
JX Crystals

3X
Megawatt Solar

20X
Replex

MAPV, fixed or tracked
LC2PV, tracked

Skyline High Gain Solar
~10X tracked

SunPower 
7X tracked

tenKsolar
!2X, fixed, UV/IR shielding

Zytech Solar,

Refractive efforts
Solaria 

~2X tracked
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Need: Lifetime & Degradation Science for PV Modules

Qualification testing of systems not sufficient for reliability & lifetime
•To avoid excessively high degradation rates 
•Dramatically reduced service lifetimes

Must determine degradation mechanisms and rates
•Scientific underpinning of reliability and qualification standards

Quantitative degradation rate modeling
•Connects materials, components, system
•To overall degradation rate, linearity, reciprocity
•And system lifetime performance

Science For Energy Technology Workshop
•Convened by U. S. DOE, Basic Energy Sciences

Science challenges across 9 areas of energy
PV prioritized research directions
•Photovoltaic module lifetime and degradation science
•Fundamental properties of photovoltaic interfaces
•Advanced photovoltaic analysis and computational modeling for scale-up

http://www.er.doe.gov/bes/reports/files/SETF_rpt.pdf

http://www.er.doe.gov/bes/reports/files/SETF_rpt.pdf�
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Outline

2 characteristic LCPV systems: 
•Replex’s MAPV & LC2PV

=> LC2PV Poster 

LCPV elements, stressors and design characteristics
•Primary optics, secondary optics, cell encapsulation, heat sinking

LCPV solar and environmental durability
•Materials examples: acrylics, outdoors, 4 Suns and 50 Suns
•Elements examples: Al/Ag mirrors, back & front surface mirrors, UV blocking mirrors

Cell encapsulation and thermal management

LCPV challenges

Conclusions
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MAPV: Mirror augmented PV

Flat mirrors & c-Si modules
•1.15X (fixed)
•1.5 to 2.2X (tracked)

Validation of LCPV degradation rates and lifetime needed
•Carrizo Plains / Arco Solar:  Rd = 10%/yr degradation

Requires a materials/components/systems optimization approach
•Based on lifetime and degradation science
•Not just qualification testing results

Two Replex LCPV Systems

Sunlight

LC2PV: Low cost, low conc. PV

Compound parabolic concentrator
10X geometrical concentration

CPC 
Mirror

Heatsink

c-Si cell

Encapsulant

Therm-a-gap 
pad

Glass
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LCPV Elements, Stressors and Design Characteristics, 

LCPV elements
•1 Sun optics
•Multi-sun optics
•Cell level encapsulation
•Silicon cells
•Dielectric isolation / thermal conduction
•Thermal management

Stressors
• Irradiance
•Temperature

Thermal degradation
Thermal expansion mismatches

•Humidity
Florida
Arizona

•Cycling
•Electrical

Current, voltage
Corrosion

Geometrical concentration
•MAPV - 1.5 to 2 Suns
•LC2PV - 5 to 10 Suns

Solar Mirror based optics
•Acrylic substrate
•Silver or aluminum mirrors
•First or second surface acrylic

Silicon cells
•Encapsulation
•Stringing and tabbing
•Heat sinking

LCPV cost constraints
•Performance & LCOE
•Manufacturability
•Durability
•Reliability
•Lifetime
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LCPV Solar and Environmental Durability Issues

Acrylic solar durability
•PMMA: Arizona & Florida weathering
•PMMA: A new solar radiation durability metric: Induced absorbance to dose

Solar mirror durability
•Aluminum & silver mirrors: Arizona & Florida weathering
•Accelerated QUV testing of Al & Ag mirrors

Solar durability of back surface Al mirrors in a CPC

Cell encapsulation and thermal management



Materials Science & Engineering, VUV-Lab, Roger H. French, EMSE 406 Optical Materials & Technologies © 2010  March 25, 2011,  VuGraph 8

Natural Weathering of Acrylic Sheet: Arizona & Florida

Not much change in transmission
•Over 10 years exposure

Humidity in Florida increases
•Transmission drop
•Compared to AZ (dry)

Haze also affected by humidity
•Rate of change higher in FL

What are quantitative requirements?
•On material for this LCPV application?

Varies with system/element design
•Yes/No answer not germane
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75 mm film with UV stabilizers 
•Shows strong absorption edge at 400 nm

Annual 1Sun Dose = 9.3 GJ/m2

Photodarkening at 400-600 nm
Some photobleaching below 400 nm

Quantitative degradation rates Rd

Induced Absorbance To Dose

Not all acrylics are alike
Need sufficient durability
•Without excessive cost of ownership

Optimize material to application
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Induced Absorbance To Dose

Much lower degradation rates
•Than highly stabilized PMMA-1

Check linearity & reciprocity
Then Use for accelerated testing
•Or real time 50 Sun testing
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Expected Irradiance on LC2PV CPC Reflector

Non-tracking N/S direction
Max irradiance = 1.8 kW/m2

What are critical material requirements? Not just qual. testing requirements
•MAPV PO: 1 Sun Irradiance.             LC2PV: 2.8 Sun Irradiance in some areas

Must optimize materials, componets and system for durability & lifetime

Tracking E/W direction
Max irradiance = 2.8 kW/m2

CPC 
Mirror

Heatsink

c-Si cell

Encapsulant

Therm-a-gap pad

Glass
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Optical Efficiency: Al vs. Ag Back Surface (BS) Mirrors

High reflectivity of silver, improves optical efficiency and performance
•But increases costs, and reduces durability and lifetime

Must carefully avoid increasing cost of ownership

Silver offers the highest specular reflectance
Averaging nearly 96-98% over the visible, 
While aluminum averages 87-89%.
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Al/Back Surface Mirror Durability: Arizona Outdoors

Aluminum back surface mirrors show good durability

Sample (as compared to 
standard aluminum) exhibited 
very little degradation in a dry, 
hot environment.
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Al/Back Surface Mirror Durability: Accelerated Testing

QUV exposures with condensing humidity and heat during dark periods
•Compare to Florida natural weathering 

Aluminum/BS mirror: average 7% reduction in specular reflectance
Silver/BS mirror: average 17% reduction in specular reflectance

Aluminum/BS mirrors more durable in humid conditions
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Al Back vs. Front Surface Mirrors: Optical Efficiency

Front surface mirrors reflect UV and have similar visible reflectance
Back surface mirrors don’t reflect UV, reduce UV exposure of cell encapsulation 
•With similar optical efficiency when used with c-Si cells

Front Surface offers higher overall
reflectance, but presents challenges
with regard to protecting the metal surface.
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Replex UV Selective Al/Back Surface Mirrors
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 Mirror Type Reflectance Cutoff
UVR                   335 nm
MP                    375 nm
UVA                   400 nm

Ultraviolet Visible Infrared

Replex UVR Replex MP

Replex UVA

And back surface mirrors allow tuning of UV absorption edge
•Creating wavelength selective mirrors
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Cell Level Irradiance and Thermal Management

10X CPC geometrical concentration
•Average cell irradiance = 6.9 kW/m2

Hot spot, max conc. on cell = 26X

Encapsulation durability concern
Some decrease in performance
•But doesn’t justify cost of secondary optic

Thermal management of cell
•Using aluminum heat sink, 

7X area ratio: cell to heat sink
•Also aligns optics

Heat sinking a cost challenge
•not a technical challenge
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LCPV Challenges

Using standard materials and components 
•Under “accelerated” conditions

Maximizing optical efficiency

Sufficient, but cost effective, materials & component durability
•Acrylic
•Mirrors

Resistive losses due to more current out of standard cells

Cost of Manufacture
•Complexity
•Manufacturing throughput
•Cost model for design decisions
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Conclusions

Interactive optimization essential
•Of materials, components (mirror, cell etc.) and system
•Not just materials and vendor choices by qual. testing and price

LCPV allows conventional materials and components
•And requires close attention to cost-effective technology choices

PV performance focus, can obscure important durability and lifetime choices
•High initial performance with high degradation rate

Essential efforts for reliable, durable, long-lived systems
•Quantitative degradation mechanisms and rates
•Detailed knowledge of system characteristics
•Detailed knowledge of environmental conditions and variability

i.e. a clear understanding of materials, components, and system



Backgrounder
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System Designs: 
•MAPV - 1.5 to 2 Suns
•LC2PV - 5 to 10 Suns

Solar Mirror based
•Acrylic Substrate
•First or Second Surface Acrylic
•Silver or Aluminum Reflectors

Silicon Cells
•Encapsulation
•Stringing and Tabbing
•Heat Sinking

LCPV Cost Constraints
•Manufacturability
•Durability
•Reliability
•Lifetime
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