U.S. Department of Energy Energy Efficiency and Renewable Energy

Power Electronics: Workshop on System Driven Approach for Inverter R&D

April 23-24, 2003

Stan Atcitty Ward I. Bower

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Outline

- Converter Overview
- Technology Features
- Major Markets
- Converter Cost
- Ward Bower (Converter Issues, Challenges, & Key Logistics Issues)

U.S. Department of Energy Energy Efficiency and Renewable Energy

> Power Electronics Connect a Power Source To a Power Load

- Convert AC to DC, DC to AC, AC to AC, and DC to DC
- Requires

- Filters

Typical System Requirements for Power Converters

Reliability and Cost are Key!

Advancement of Power Devices

Summary of Silicon Power Device Capabilities

Trends:

- Increase Voltage/Current Ratings
- Increase Switching Frequency
- Lower Switching Losses
- Improve Drives
- More Integration
 - Self Protection & Diagnostics
 - Lower Inductance

Source: Mohan, Undeland, and Robbins, Power Electronics: Converters, Applications and Design 3rd Edition (John Wiley & Sons, 2002)

SiC Device Research

- Advantages
 - High Frequency Operation
 - Less Switching Losses
 - Higher Blocking Voltages
 - Higher Operating Temperature
- Disadvantages
 - Expensive
 - Limited Current Level
- Today's Manufacturers
 - Cree Inc. and Infineon Technologies (SiC Schottky Diodes)
- Three Terminal Devices in ~2005 Source: Dr. T. Paul Chow, RPI

Power Electronic Devices (Low Power)

- One of the More Mature
 Technologies in Power Electronics
- Rapid Power Semiconductor Advances Continue!
- Rapid Advances Result in Opportunities Related to Operating Parameters, Power Capabilities and Packaging

"Intelligent Power" Technology Trends

U.S. Department of Energy Energy Efficiency and Renewable Energy

Power Electronic Devices (High Power)

Switching Technologies

Source: Power Electronics Technology at the Dawn of the New Millenium - Status and Future

Converter Controls

aboratories.

Components, Packaging, & Cooling

- Passive Components: Designers Typically
 Use Off-the-Shelf Discrete Components
- Packaging is Strongly Influenced by Cooling Needs, Component Layout and Components
- Cooling Technology Has Improved With Better Heat Transfer From the Power Electronics

Manufacturing Technology

- Currently Most Converters Often Rely Heavily on Manual Assembly.
- The Disparity in Sizes and Methods of Interconnection Increase the Cost and Reduce Quality, Flexibility, & Reliability.
- A Next Step Is a System-Driven Design Approach Using Integrated Packaging Techniques and Focused R&D

Technology Summary

Technology Feature	Status (low power)	Status (high power)
1. Power Electronic Devices	Significant Progress	Evolving
2. Switching Technology	Significant Progress	Evolving
3. Control Technology	Evolving	Evolving
4. Passive Components	Old Technology	Old Technology
5. Packaging Technology	Old Technology	Old Technology
6. Thermal Management	Old Technology	Old Technology
7. Manufacturing Technology	Old Technology	Old Technology

Major Converter Markets

- **Motor Drives** Source: Electronic Motor Drives 2001-2005, Drive Research Corporation, August 2001
 - \$12.5 Billion Worldwide Market in 2000
 - \$19.1Billion by 2005
- **Power Supplies** Source: AC/DC Power Supplies: Worldwide Market Forcasts, Competitive Environment and Industry Trends: Darnell.com Inc.
 - \$7.7 Billion in 2002
 - \$9.6 Billion by 2007
- Uninterruptiple Power Supplies Source: The 2002 Power Protection Market Intelligence Report, Venture Development Corporation, August 2002
 - \$4.5 Billion Worldwide Market in 2001
 - \$5.2 Billion by 2006

Major Converter Markets

- **Flywheels** Source: The 2002 The North American Market for Grid Power Solutions: Distributed Generation & Ride-Through Technologies, Venture Development Corp., June 2001
 - \$110 Million North American Market in 2000
 - \$250 Million by 2005
- **Fuel Cells** Source: The 2002 The North American Market for Grid Power Solutions: Distributed Generation & Ride-Through Technologies, Venture Development Corp., June 2001
 - \$42 Million North American Market in 2000
 - \$900 Million by 2005
- **Micro-turbines** Source: The 2002 The North American Market for Grid Power Solutions: Distributed Generation & Ride-Through Technologies, Venture Development Corp.
 - \$25 Million North American Market in 2000
 - \$500 Million by 2005
- Inverters for Solar Source: IEA PVPS T1-11:2002
 - \$264 Million Worldwide Market in 2002
- Ø
- \$515 Million Worldwide Market in 2005 With 25%/Annum Growth

Converter Cost

- Converter Cost Is Significant (>25% System Cost)
- Average List Price For Inverters Rated 1-5kW is
 <u>\$834.00/kW</u> Source: Inverter prices: Solarbuzz, Inc., March 2003
- Cost Range From \$100/kW (UPS) to \$1200/kW (Standalone) Has Been Seen
- Manufactures Reluctant to Provide Detail Cost Information
- Market for PV Systems Are Small Compared to UPS or Motor Drives Market
- Cost Comparison Often Apples to Oranges

Inverter Issues

- Little Movement in Cost and Reliability
- Low Manufacturing Volume For Renewable/DER
- Low Profit Margin

What is Needed

- Reduce Costs, Improve Reliability
- Develop State-of-art Inverters with Multiple Uses Increases Production Volume For Renewables and Distributed Energy Resources
- Improve Controls and Adaptability
- Improve Manufacturability

Technical Challenges

- Apply Advanced Technologies
 - Digital Signal Processing (DSP)
 - Advanced or Made-to-order Power Electronics
 - Advanced Switching Techniques
 - Internal and External Controls
- Improve Packaging and Layout
- Reduce Thermal Stresses
 - Improved Thermal Management
 - Reduce Internal Losses

Institutional Challenges

- Develop Multi-Use Designs (Synergism!)
 - Align With Huge Users of Similar Power Electronics (Motor Drives, Uninterruptible Power Supplies).
- Provide Focused Government-sponsored R&D and Manufacturing Initiatives for Renewable/DER/Storage-Specific Requirements and Controls.
- Require Manufacturing Quality Control, Environmental & Reliability Testing! (HALTs[™])

Key Logistics Issues

- Demand for Renewables/DER and Storage Systems Will Not Drive Power Electronics or Silicon Technology Improvements
- Increased Sales Volume, Better Packaging and Manufacturing Techniques Can Reduce Cost and Increase Reliability
- Standardization is Possible for a Core Unit, but Custom Design Flexibility Must be Retained
- Focused Cross Technology R&D Can Be a Win-Win for Technologies and Inverter Manufacturers

Bibliography

- F.C. Lee, J.D. van Wyk, D. Boroyevich, T. Jahns, T.P. Chow, P. Barbosa, *Modularization and Integration as a Future Approach to Power Electronics Systems*, Report for Nation Science Foundation.
- F.C. Lee, J.D. van Wyk, D. Boroyevich, T. Jahns, R.D. Lorenz, T.P. Chow, R.J. Gutmann, P. Barbosa, *An Integrated Approach to Power Electronics Systems*, Report for Nation Science Foundation, 2002.
- J.D. Van Wyk, F.C. Lee, *Power Electronics Technology at the Dawn of the New Millenium-Status and Future*, Proceeding of the IEEE 1999.
- R.J. Kerkman, G.L. Skibinski, D.W. Schlegel, AC Drives: Year 2000 (Y2K) and Beyond, IEEE-APEC March, 1999.
- K. Motto, L. Yuxin, A. Huang, *Comparison of the State-of-the-art High Power IGBTs, GCTs, and ETOs*, Virginia Power Electronics Center.
- E. Carroll, N. Galster, *IGBT or IGCT: Consideration for Very High Power Applications*, ABB Semiconductors AG, October 22, 1997.
- S. Bernet, R. Teichmann, A. Zuckerberger, P. Steimber, Comparison of High Power IGBTs, GCTs, and ETOs, Virginia Power Electronics Center.
- Carroll, E., Galster, N., *IGBT or IGCT: Considerations for Very High Power Applications,* ABB Semiconductors AG, October 22, 1997.
- S. Atcitty, S. Ranade, A. Grey-Fenner, *Summary of the State-of-the-art Power Conversion Systems for Energy Storage Applications*, SAND98-2019, September 1998.

S. Atcitty, L. Zhang, C. Shen, M. Crow, Z. Yang, Integration of a StatCom and Battery Energy Storage, IEEE Transaction on Power Systems, May 2001.

Bibliography (Cont)

- A. Akhil, S. Swaminathan, R. Sen, *Cost Analysis of Energy Storage Systems for Electric Utility Applications,* SAND97-0443, February 1997.
- N. Mohan, T.M. Undeland, W.P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Edition, John Wiley and Sons (2002) ISBN: 0-471-22693-9.
- P. Taylor, L. Johnson, A Summary of the State of the Art of Superconducting Magnetic Energy Storage Systems, Flywheel Energy Storage Systems, and Compressed Air Energy Storage Systems, SAND99-1854, July 1999.
- R. Tarter, Solid-state Power Conversion Handbook, John Wiley and Sons, 1993.
- Ericksen, Hamilton, Campisi, Whitcomb, Borraccne, Jacobson, *Standardized Power Switch System Modules*, PCIM Power Electronics Institute, Power Semiconductor Specialist Course Notes, Power System World, 1997.
- W. Bower, *Inverters-Critical Photovoltaic Balance-of-system Components: Status, Issues, and Newmillennium Opportunities*, Progress in Photovoltaics Applications 8, 2000.
- Inverter Price Environment, <u>www.solarbuzz.com/inverterprices.htm</u>, March 27, 2003.
- T. Kaporch, *Electronic Motor Drive Market To Top &19 Billion in 2005*, www.quicksitebuilder.cnet.com/tkaporch/drivesresearch/id8.html., March 27, 2003.
- AC/DC Power Supplies: Worldwide Market Forecasts, Competitive Environment and Industry Trends, www.darnell.com/services/01-acmkt.stm, March 27, 2003.

Bibliography (Cont)

- M. Goodwin, N. Andrews, *An Executive White Paper On: Battery Powered Uninterruptible Power Supplies North America, Europe, Asia-Pacific, Latin America, <u>www.vdc-corp.com</u>, March 27, 2003.*
- M. Gaboriault, J. Plante, N. Andrews, *An Executive White Paper On: The North American Market For Grid Power Solutions: Distributed Generation & Ride-Through Technologies*, <u>www.vdc-corp.com</u>, March 27, 2003.
- I. Celanovic, N. Celanovic, I. Milosavljevic, D. Boroyevich, R. Cooley, *A New Control Architecture for Future Distributed Power Electronics Systems*, Virginia Polytechnic Institute and State University, 2000.
- Chow, T.P., *High-Voltage SiC and GaN Devices for Power Electronics Applications*, Presentation by Dr. Chow, Rensselaer Polytechnic Institute, September 11, 2002.
- Trends in Photovoltaic Applications in Selected IEA Countries between 1992 and 2001, International Energy Agency Photovoltaic Power Systems, Report IEA-PVPS T1-11:2002.

