

Solar Thermal Systems Analysis Tim Merrigan National Renewable Energy Laboratory

Presentation Outline

- Systems analysis tools used in solar heating R&D
 - Thermal system performance analysis
 - System cost analysis
 - Material durability analysis
 - Market analysis
- Example of systems analysis tools applied to the management of the innovative, low-cost solar water heater R&D project
- Use of systems analysis in the development of solar heating R&D goals

Presentation Acknowledgements

- DOE
 - Tex Wilkins
 - Lew Pratsch

• Industry

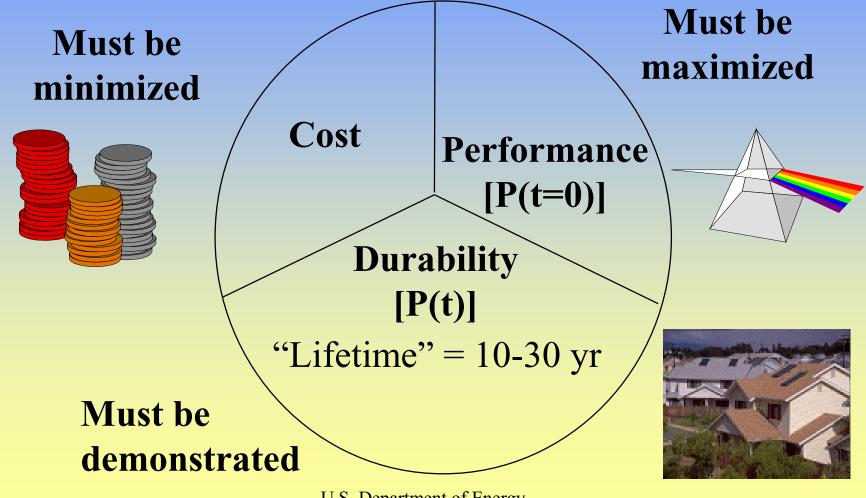
- Les Nelson, Western Renewables Group
- Bob Lorand, SAIC
- Bill Scholten, SAIC

• NREL

- Jay Burch
- Craig Christensen
- Gary Jorgensen
- Mark Mehos

• SNL

- Rod Mahoney
- University
 - Jane Davidson, Univ. of Minnesota
 - Bill Beckman, Univ. of Wisconsin



Solar Thermal Systems Analysis

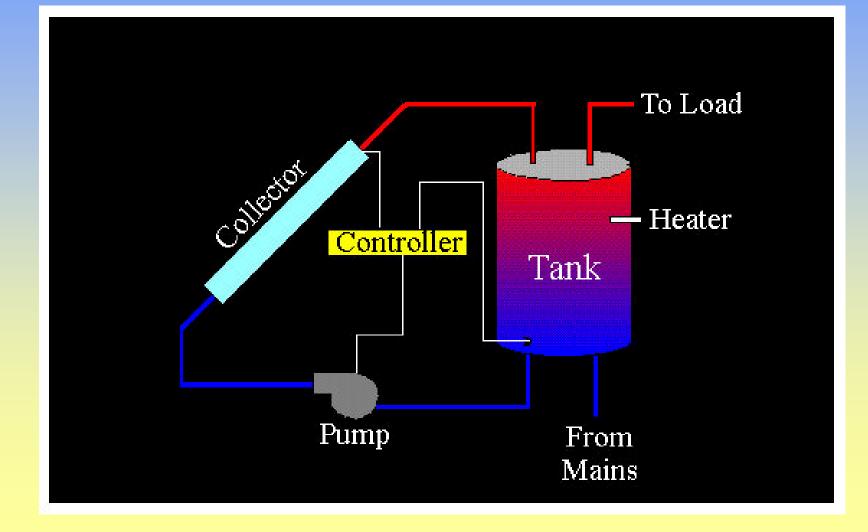
System Analysis Tools

The Product Requirement Triad

Solar Thermal Systems Analysis

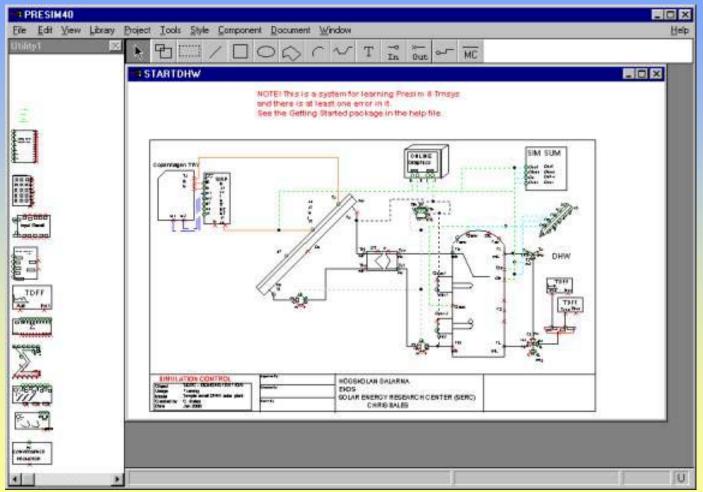
Systems Performance Analysis

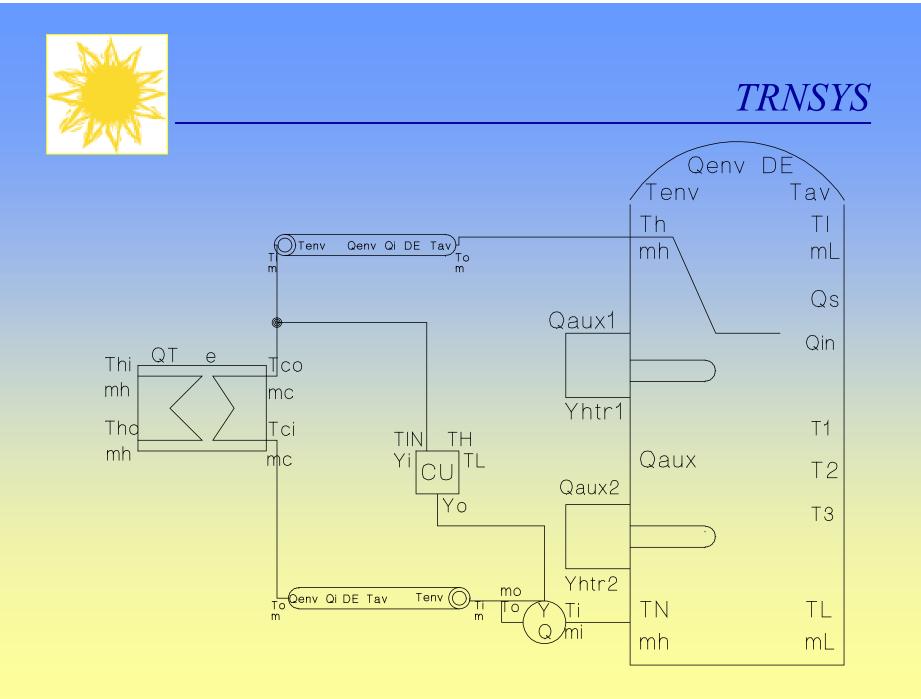
Thermal Performance Analysis


TRNSYS (Transient System Simulation):

- Modular program written in FORTRAN
- Mathematical models of individual system components are connected together to form a complete system for simulation
- TRNSYS solves the set of algebraic and differential equations that describe the system at a user-selectable timestep

Developed at University of Wisconsin Solar Energy Laboratory: http://sel.me.wisc.edu



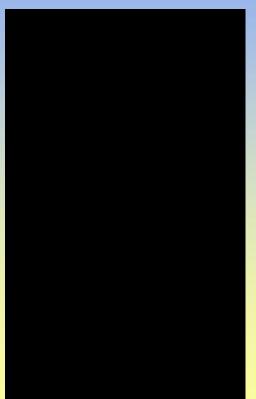

TRNSYS

TRNSYS

TRNSYS

tmsys15\Examples\Ex7.L53	- O ×
EX7.0UT	
C:\trnsys15\Examples\Ex7.dck (Line 3)	
ASSIGN \IRNSYS15\EXAMPLES\EX7.LSI 6	
ASSIGN \TRNSYS15\ASHRAE.COF 8	-
ASSIGN \TRNSYS15\VEATHER\WINTER.DAT 10	
ASSIGN \TRNSYS15\EXAMPLES\EX7.PLT 11	
ASSIGN \TRNSYS15\EXAMPLES\EX7.OUT 12	
*	*
* EXAMPLE 7	
* DIRECT GAIN WINDOW - WINTER	*
* SEPTEMBER 1999	*
Internet and an and the first statistic product on the second statement.	para a ser a s

SIMULATION Ø 168 Ø.25	
TOLERANCES0101	
LIMITS 20 50	
WIDTH 72	
1.45.3135.5121.1233-6	
N-N-N-N-N	
UNIT 9 TYPE 9 CARD READER	
PAR 18	
1 0 7 1 -5 41.87 0 4 0.447 0. 6 0.55556 -1	7.778 7 0.55556 -17.778 10 -1
н-н-н-н-н	
UNIT 16 TYPE 16 RADIATION PROCESSOR 1	
PAR 9	
1 1 1 8 40, 4871 0 2 -1	5.00 B
	*

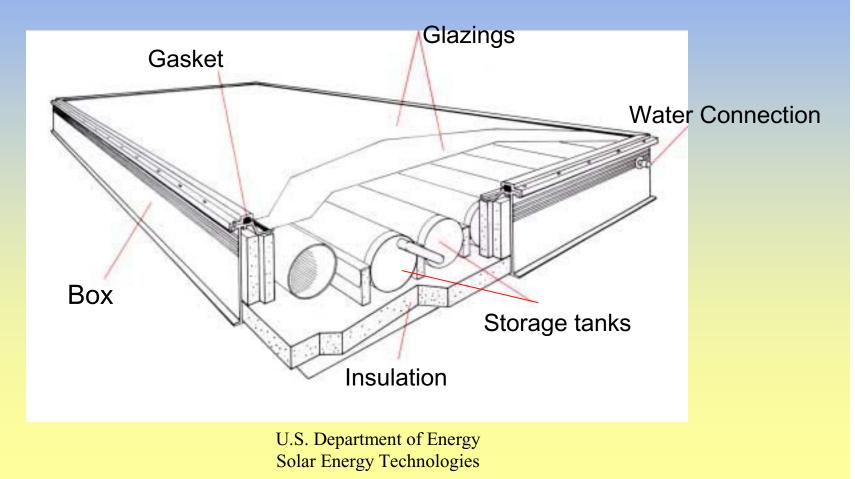

Solar Thermal Systems Analysis

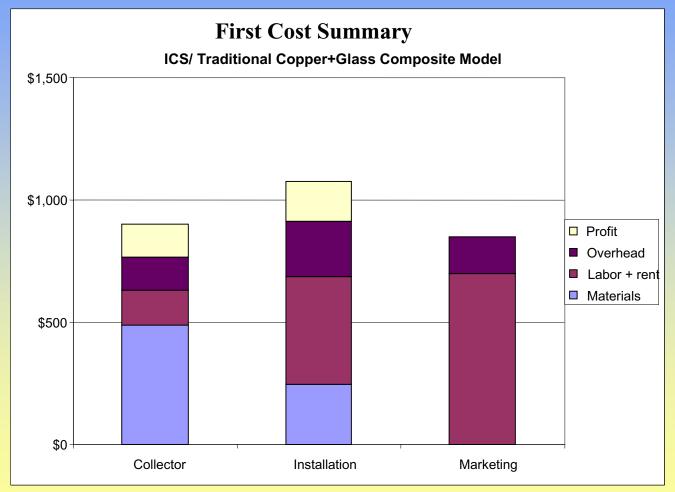
System Cost Analysis

Residential Solar Water Heating

Common System Types

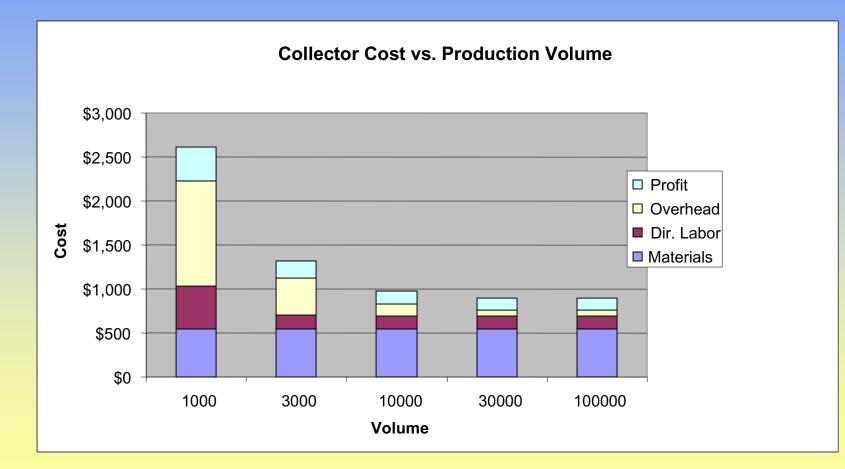
U.S. Department of Energy Solar Energy Technologies

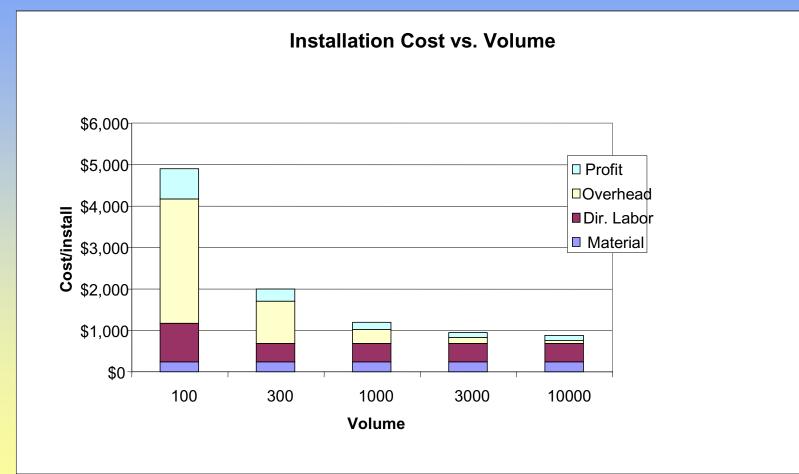

Active



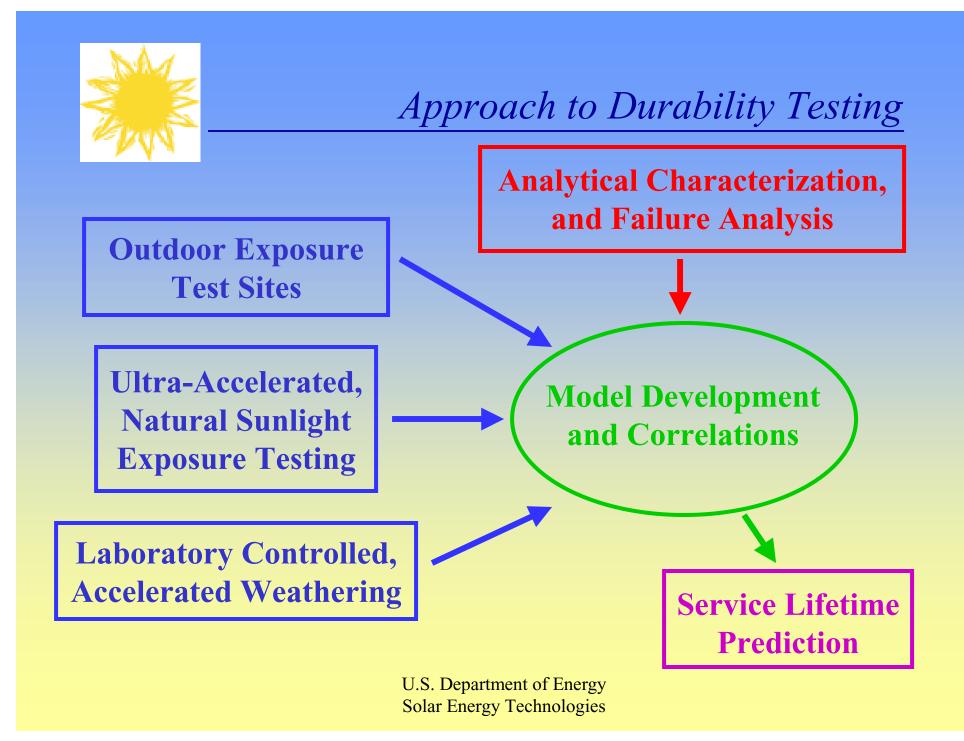
Passive Solar Water Heating

Integral Collector-Storage (ICS) Unit




Collector Labor Costs

Operation	Labor Class	Labor rate (\$/hr)	Hours per system	Cost/ System (\$)	Comments/Source
1. Absorber Production	Foreman	25.00	-		Foreman's time pro-rated among sub-assembly operations
1.1 Tube and Header Fabrication, including connections.	pipe fitter	18.00	1.6		Header from subcontractor-furnished 8 foot tubes.
	laborer	9.00	0.8	7.20	
1.2 Apply selective coating					No direct labor. Subcontracted job. See Coll Matls sheet.
1.3 Leak Test Assembly	tester	12.00	0.6	7.20	
2. Enclosure Production	Foreman	25.00	0.3	7.50	
2.1 Cut and Miter Sides, Fasten to form frame	metal worker	12.00	0.4	4.80	
	helper	9.00	0.4	3.60	
2.2 Adhesively Bond Insulation Board to Back Sheet	laborer	9.00	0.2	1.80	
2.3 Insert Back Sheet with Insulation into Frame	laborer	9.00	0.2	1.80	
3. Assembly Completion	Foreman	25.00	0.1	2.50	
3.1 Install sealant and glazing	technician	12.00	0.3	3.60	
3.2 Install gasket and cap	technician	12.00	0.3	3.60	
4. Inspection	Foreman	25.00	0.1	2.50	
	Inspector	15.00	0.2	3.00	
5. Warehousing/Shipping	Foreman	25.00	0.1	2.50	
5.1 Place in Shipping Crate	laborer	9.00	0.2	1.80	
	fork lift				
5.2 Move to Shipping Area	operator	15.00	0.3	4.50	
		average:			
	Totals:	14.88	6.50	\$96.70	



First Cost				% 1st cost
Collector	10,000 per year		\$899	32%
Materials		\$488.05		
Labor (Direct + burdened @ 0.477)		\$142.78		
Overhead	explicit method	\$133.54		
Profit Before Tax (@15.0%; A.T.Profit =10.29	%; Tax = 32.0%)	\$134.89		
Cost/ft2 = \$28	(O+P)/(M+L):	43%		
Installation	1,000	per year	\$1,074	38%
Balance of System Materials + Coll. finance		\$246.85		
Labor (Direct + burdened @ 0.497) + Rentals		\$439.16		
Overhead	explicit method	\$227.16		
Profit Before Tax (@15.0%; A.T.Profit =10.29	<u>%;</u> Tax = 32.0%)	\$161.15		
	(O+P)/(M+L):	57%		
Market			\$849	30%
Sales (94 systems/person-year)		\$696.74		
Advertising		\$30.79		
Distribution (shipping + 10.0% mark-up)		\$121.18		
Total first cost:			\$2,822	
Cost/ft2 = \$88				
Solar R&M/Life-cycle cost (20 yr. pe		% LCC		
		First Cost	\$2,822	84%
Repair and Maintenance (present val		(present value)	\$536	16%
		Total Real Cost	\$3,359	
Economic Indicators for Phoenix**	(EI =8.0 c/kWh; (Gas = 6.0/.8 \$/MN	No O&M	With O&M
	Annual	Savings (\$/yr)*	\$164	\$125
Cos	9.9	11.8		
	Return	n on Investment	1.5%	-1.1%
Monthly net cash flow (elec., 30 yr Ioan @ 8.0%, no tax)			-\$7.23	-\$10.46
Simple payback vs Electric (yr)			17.3	20.6
	Simple payback vs Gas (yr)		53.8	64.0
	Life cycle cost		-\$554	-\$1,090
	-\$2,242	-\$2,778		

Solar Thermal Systems Analysis

Material Durability Analysis

Durability Testing Methodology

- Perform accelerated tests using several levels of laboratory-controlled, constant stress values
- Develop material-specific model (damage function) that relates loss in performance (ΔP) to applied/experienced stresses
- Fit measured ΔP to model to obtain damage function coefficients
- Use model to predict in-service degradation

Model / Damage Function

1) For Constant Accelerated Stresses:

 $\Delta \mathbf{P}_{i} = \mathbf{A} \mathbf{I}^{n} \Delta \mathbf{t}_{i} \exp[-\mathbf{E}/\mathbf{k}\mathbf{T}]$

2) I and T are known/constant; measure ΔP_i ; obtain A, E, and n

3) For Variable Real-World Stresses:

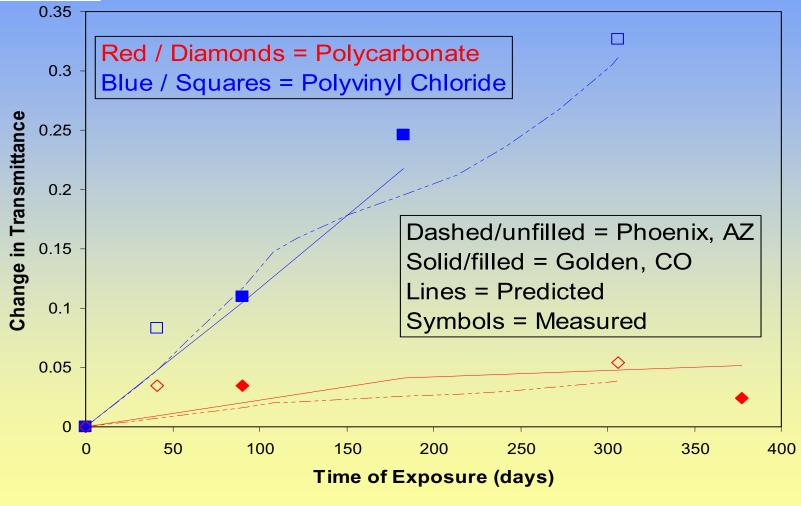
 $\Delta \mathbf{P}_{i} = \sum_{j} \left\{ \mathbf{A} \mathbf{I}(t_{j})^{n} \Delta t_{j} \exp[-\mathbf{E}/\mathbf{k}\mathbf{T}(t_{j})] \right\}_{i}$

4) Monitor stresses; compare predicted degradation with measured outdoor results

Durability Testing

Accelerated Laboratory Chambers

Ultra-Accelerated, Natural Sunlight


Outdoor

U.S. Department of Energy Solar Energy Technologies

Measured vs. Predicted $\Delta \tau$ for 2 Glazings at 2 Sites

Solar Thermal Systems Analysis

Market Analysis

Solar Water Heating Market Research

System Market Research:

"Understanding the Customers"

- **FY98** builders indicated their concerns over aesthetics, cost, reliability, & public awareness
- **FY98** survey of 300 recent home buyers indicated interest in, but widespread lack of awareness of solar water heating systems
- **FY99** development of a marketing plan for solar water heaters in new homes

Link to 9 solar water heating system market studies: http://www.eren.doe.gov/solarbuildings/market.html

Desired solar water heating system features:

• Consumers:

- Cost ~ \$1,000-\$1,500
- Trouble-free
- Warranty/Name Firm

• Builders:

- Trouble-free
- Easy to install
- Unobtrusive
- Cost < \$1,500

• Architects:

- Unobtrusive (skylight-like)
- Small, inexpensive

Solar Thermal Systems Analysis

Example of Systems Analysis Applied to Project Management

Innovative, Low-Cost Solar Water Heaters

Project Goal:

Cut the delivered, life-cycle energy cost of solar water heating systems in half by the year 2005.

Source: Solar Buildings Strategic Plan - 1997

Innovative, Low-Cost Solar Water Heaters

• Hardware cost reduction

- Polymer technology
- Parts integration
- Installation cost reduction
 - Lighter collectors, flexible bundled piping
 - Integrated balance of system
- Marketing cost reduction
 - New construction: SWH as standard feature or standard option
 - Do-it-yourself/Home Depot

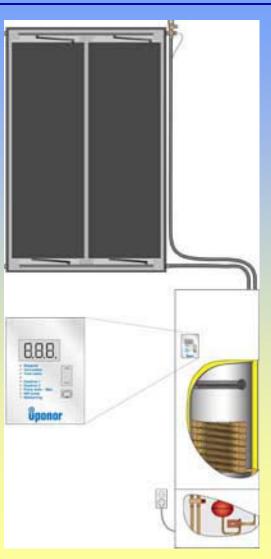
Technical basis for polymer-based systems:

- Low materials cost
- Parts integration ☑ lower manufacturing **cost**
- Light weight \square lower installation **cost**

Rotomolded Polymer Solar Water Heater

FLOAT VALVE CONTROLS **INCOMING COLD** WATER FLOW. **RIGID POLYURETHANE** COLD WATER INLET. INSULATION. **CORROSION-FREE PROTECTIVE CASING.** SAFETY CUT-OUT SWITCH. HOT WATER OUTLET. Australia COLD WATER INLET CHUTE **KEEPS HOT AND COLD** WATER SEPARATE. **Solco Industries Pty Ltd** Western Australia **AUTOMATIC ELECTRIC BOOSTER** WHICH ONLY OPERATES WHEN THE TEMPERATURE FALLS BELOW A PRE-SET LEVEL. 200 LITRE ONE-PIECE SOLAR COLLECTOR AND HOT WATER

STORAGE TANK



IEA Task 24 Competition in Sweden

Finland & Sweden

Uponor AB Espoo, Finland

Innovative, Low-Cost Solar Water Heaters

Project Phases:

Concept Generation / Exploratory Research

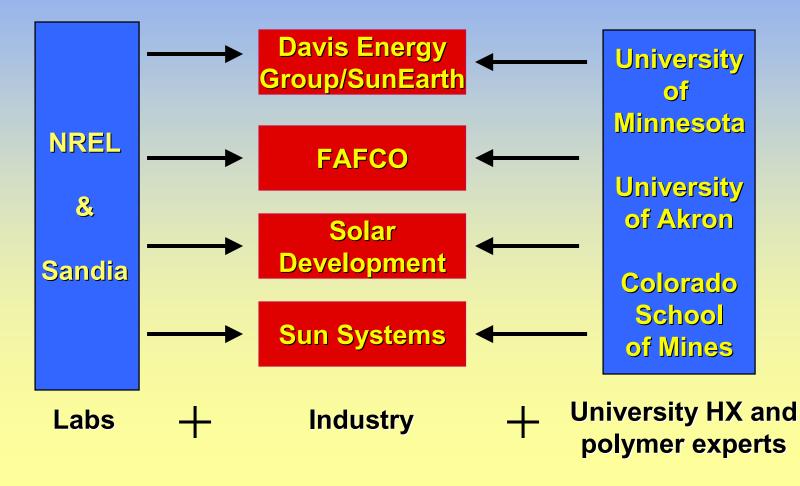
 Identification of general system configurations which could conceivably reach the project's cost goal

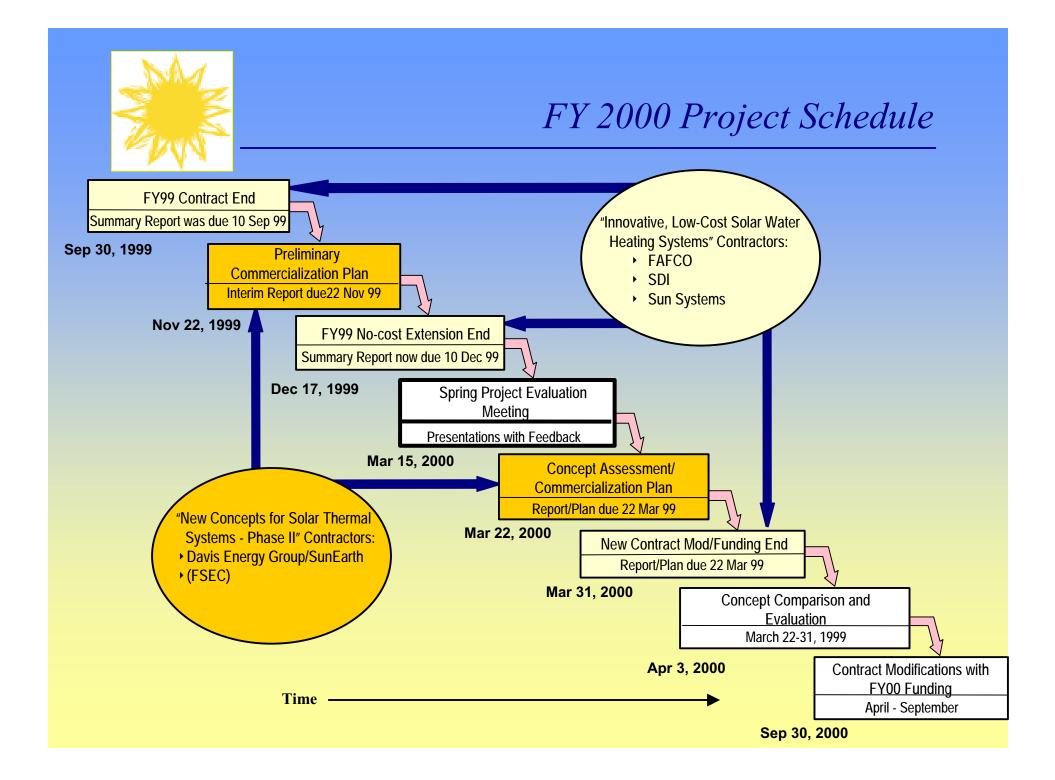
Concept Development / Prototype Test

 Development of detailed designs for promising concepts and construction and evaluation of prototypes

Advanced Development / Field Test

- Development of second-generation prototypes and conducting limited field testing and evaluation
- Engineering / Manufacturing Development
 - Construction of manufacturing facilities and evaluation of "near-final" systems in "real-world" applications




- 1997 Polymers for Solar Thermal Energy Workshop
- 1998 New Concepts for Solar Systems RFP
- **1999** Low-Cost Solar Systems RFP to industry; Phase 2 of New Concepts for Solar Systems RFP; solicitations to thermal and polymer consultants
- 2000 Concept evaluation and cost analysis; "Best" concepts selected for focused R&D
- **2001 to 2003** Develop and test prototypes; develop manufacturing process

Innovative, Low-Cost Solar Water Heaters

Industry partners developing innovative, low-cost solar water heaters:

Phase One Evaluation:

Evaluation Criteria	Weight
Technical Criteria	33 1/3%
Market Criteria	33 1/3%
 Probability of Success 	33 1/3%
Programmatic Criteria	N/A
– (Applied After Evaluations Completed)	

Technical Criteria	Weight
Cost of Saved Energy	67%
Life Cycle Savings	33%
Material properties were used as in	popula to TDNSVS to

- Material properties were used as inputs to TRNSYS to determine energy performance, since prototypes had not yet been tested.
- Hardware and installation costs were determined by the detailed system cost model
- O&M costs were based on the repair histories of each component in the system
- Business/Marketing Costs were standardized for this evaluation

Market Criteria	Weight
 Market Size/Restrictions 	40%
– What is the geographic region for this tec	hnology?
Code Requirements	40%
 What installation skills are required? Does address building code requirements? 	the unit
• Aesthetics	20%
 Installed profile, color(s), and appearance. 	

Organizational Criteria	Weight
 Probability of R&D success 	40%
Past performance	40%
 Team experience and skills 	10%
 Team resources available 	10%
 Management 	0
Production and distribution capability	0

Programmatic Criteria

Funding Considerations

- Funds needed by the team
- Available funding from the program

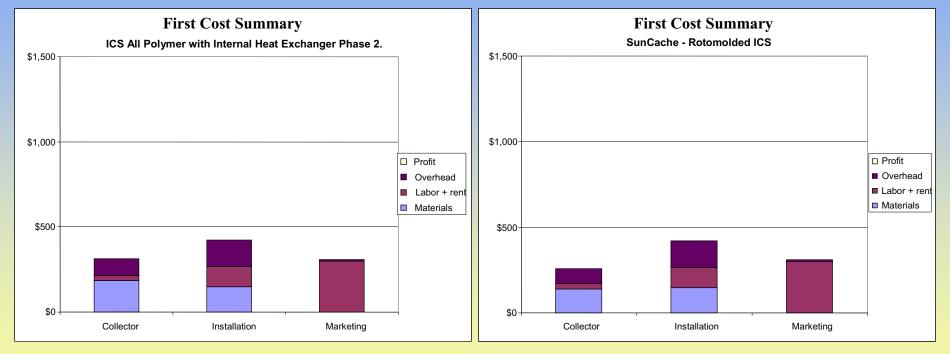
Time to Market

- Early introduction of the technology to the marketplace is critical to success of the program.
- Geographic Diversity
- Technology Diversity

Innovative, Low-Cost Solar Water Heaters

FAFCO:

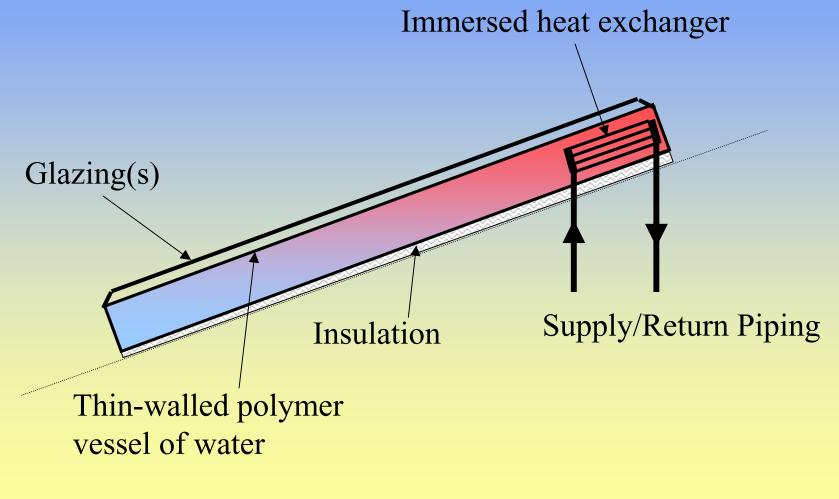
- thermoformed tank
- double glazed, back insulation
- boiling overheat protection \Rightarrow water makeup


Davis Energy Group (DEG) / SunEarth:

- rotomolded tank
- single glazed, no back insulation
- no overheat protection with sealed tank

Innovative, Low-Cost Solar Water Heaters

Project Evaluation Results



FAFCO Unpressurized ICS

DEG Unpressurized ICS

Unpressurized Integral Collector Storage

Solar Thermal Systems Analysis

Systems Analysis Applied to Program Management

Solar Buildings Historical R&D Areas

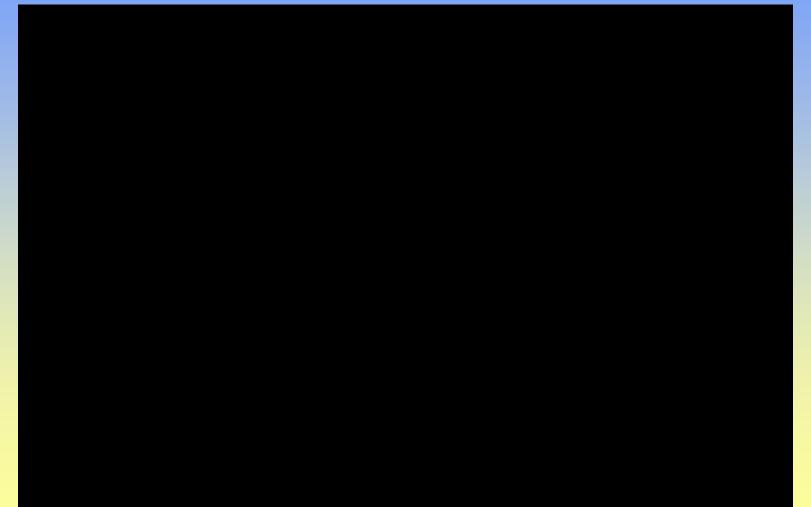
• Water heating

- Low-cost solar water heating systems
- Solar system standards and certification
- Solar collector manufacturing assistance

Space heating

Packaged solar systems

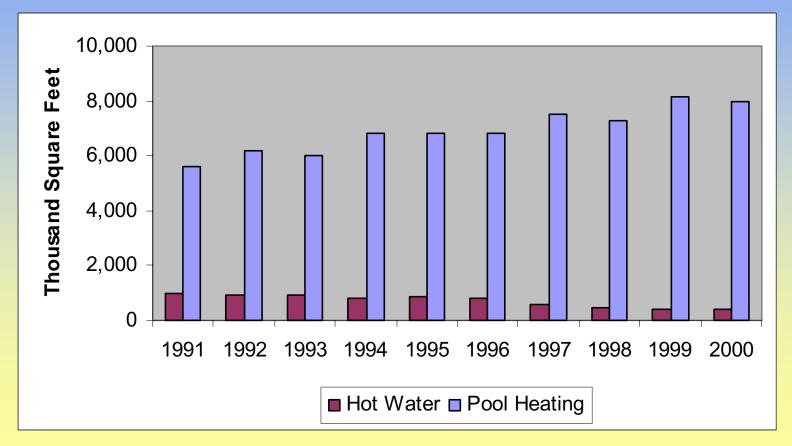
Ventilation air heating


- Transpired solar collector (R&D 100 Award - 1994)

• Space cooling

- Desiccant cooling
- Absorption air conditioning

EERE Renewable Program Budgets



U.S. Solar Water Heating Industry

Solar Thermal Collector Shipments

Source: EIA Renewable Energy Annual 2000

Potential Solar Thermal Collector Markets

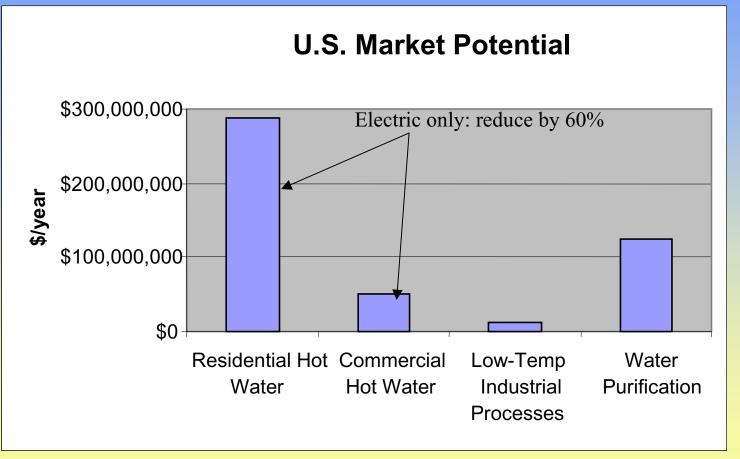
Residential

Domestic hot water; space heating and cooling; swimming pool heating

Commercial

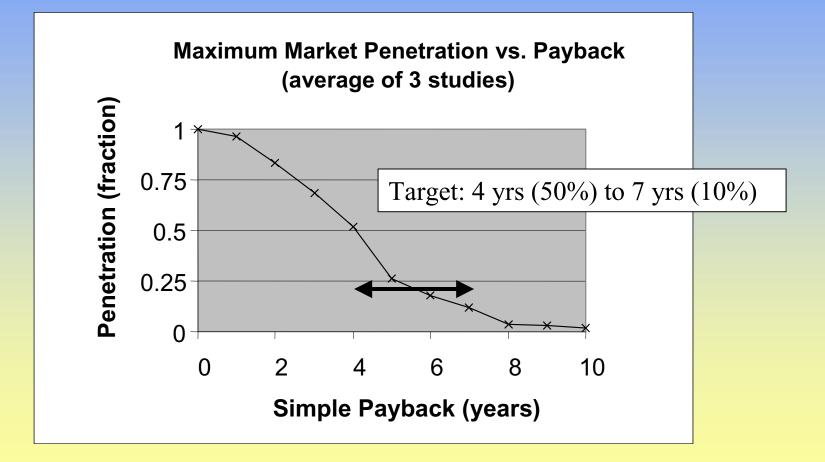
 Service hot water in hotel/motels, hospitals, prisons; institutional swimming pool heating

• Industrial

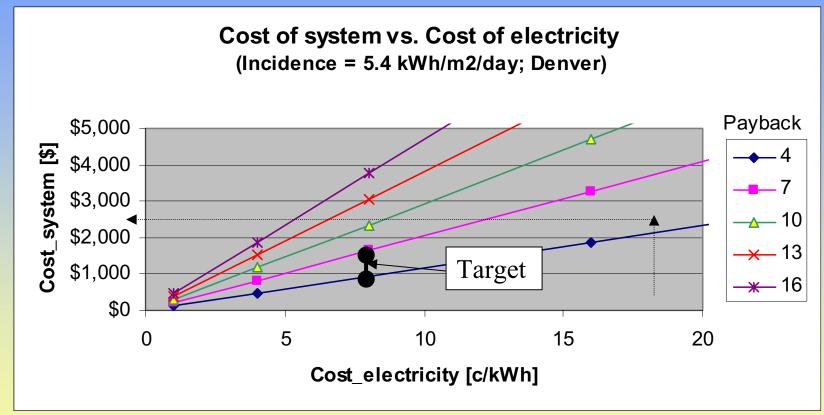

- Low temperature processes: food processing, chemicals,...

Water Purification

Desalination; pasteurization

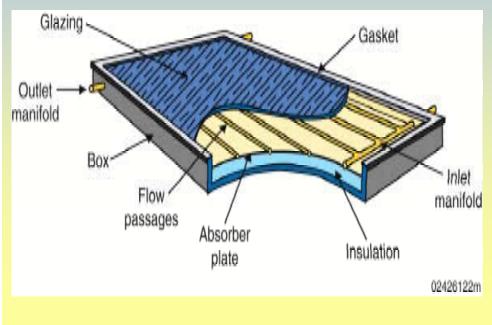

U.S. Solar Water Heating Market Size

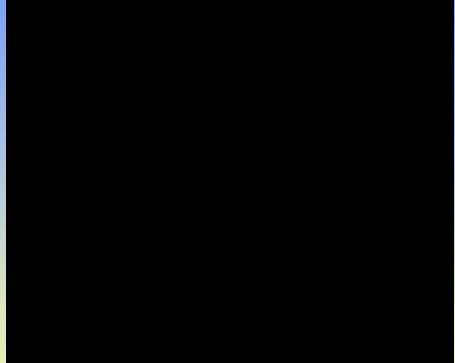
U.S. potential: >\$450 Million/year World potential: ~ 10x U.S. potential



Market Penetration Curve

Example Solar Water Heating System Cost



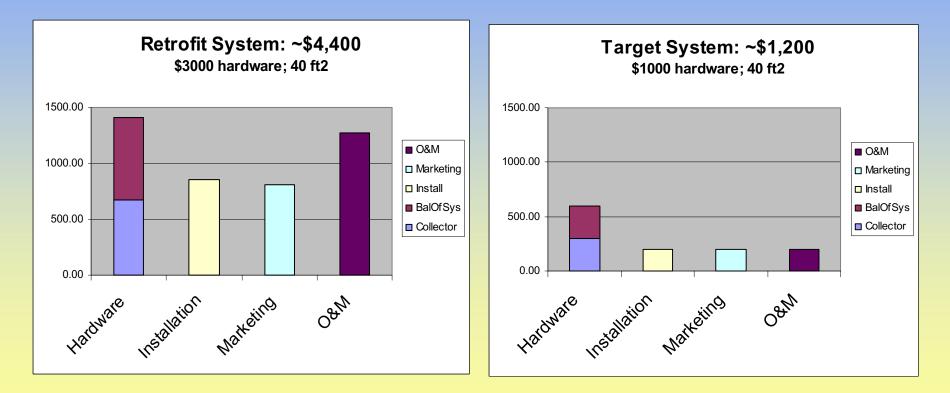

- 1. Choose market penetration % ==> payback (previous slide)
- 2. For site cost of fuel, find system cost @ payback line

Active Solar Water Heating

Flat Plate Collector

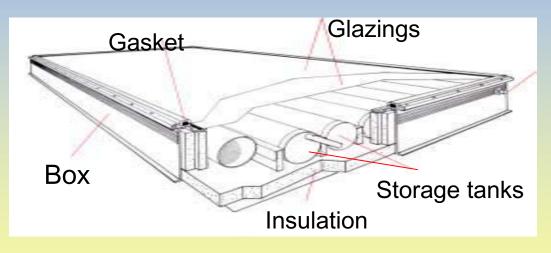
Indirect Circulation Solar System

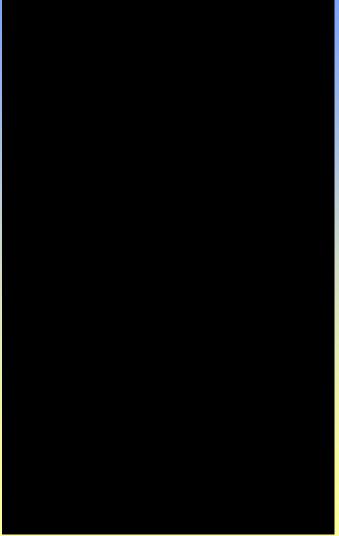
For active systems, large cost reductions are needed:


	<u>Today</u>	Goal
Hardware	\$1,400	\$600
Installation	\$900	\$200
Marketing	\$800	\$200
O&M	<u>\$1,300</u>	<u>\$200</u>
Total	\$4,400	\$1,200
Hardware cost reduction		2.3
System cost	reduction	3.7

Active Solar Water Heating System Costs

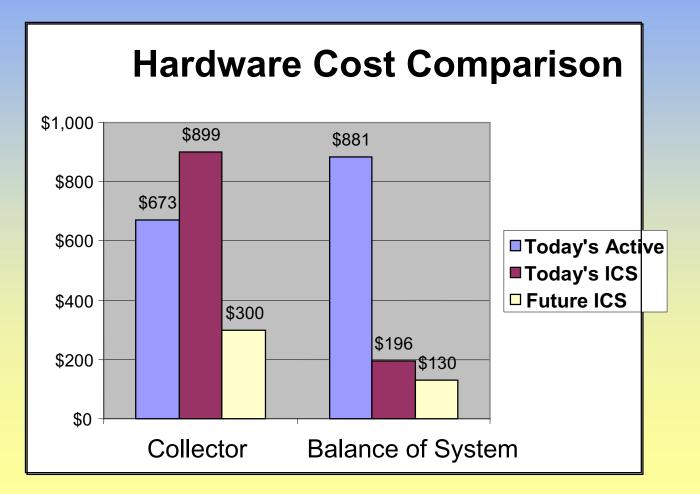
Today



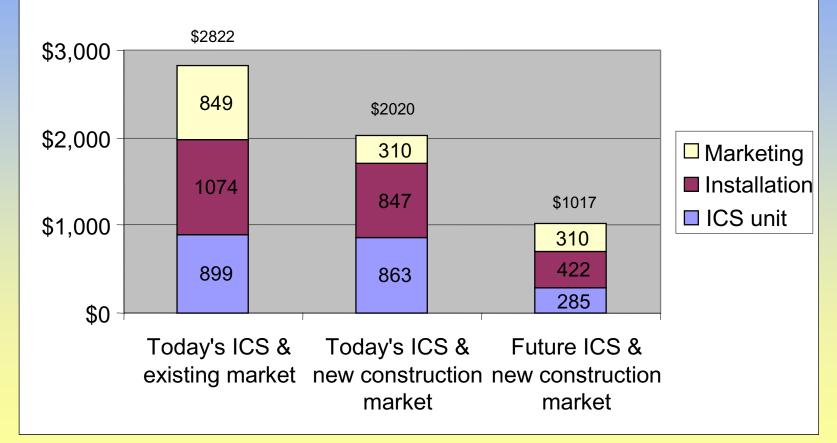


Passive Solar Water Heating

Integral Collector-Storage (ICS) System



Solar Water Heating Hardware Costs


Balance of System costs makes ICS systems inherently less expensive than active

Passive Solar Water Heating System Costs

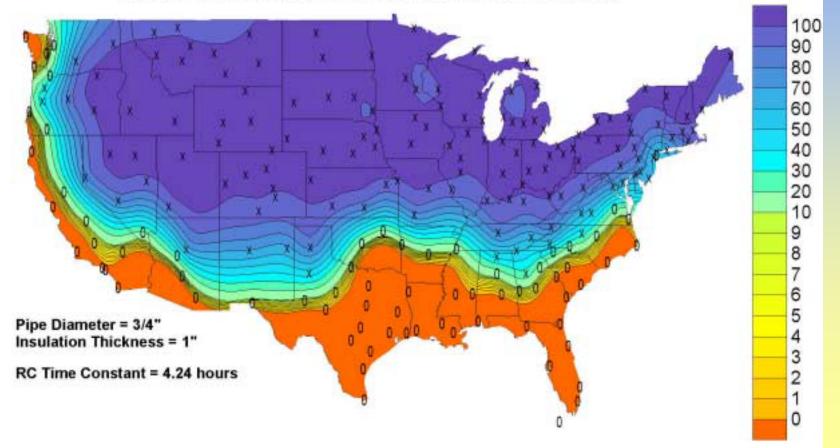
First Cost Comparison

Phoenix; Discount Rate = 3.8%; Cost of Electricity = 8 c/kWh

Innovative, Low-Cost Solar Water Heaters

Project Goal:

Cut the delivered, life-cycle energy cost of solar water heating systems in half by the year 2005.


Source: Solar Buildings Strategic Plan - 1997

Geographical Limitations of ICS Systems

Probability of at Least One Pipe Freeze in 20 Years

Always Occupied (No Vacations/Draws made every day)

Solar Thermal Systems R&D Goals

Near-Term (2005):

• Mild-climate solar water heating systems that deliver energy at \$.04/kWh

Mid-Term (2008-2010):

• Cold-climate solar water heating systems that deliver energy at \$.04-\$.05/kWh

Long-Term (2015-2020):

• Solar space heating and cooling systems that deliver energy at \$.04-\$.05/kWh