Crystalline Organic Photovoltaic Cells

PI: S. R. Forrest Department of EECS, Physics and Materials Science & Engineering University of Michigan Ann Arbor, MI stevefor@umich.edu

March 10, 2008

3 year program goals

- Demonstration of 10% power conversion efficiency at 1 sun, AM1.5 (solar spectrally corrected) illumination.
- Demonstration of extrapolated lifetime of 5 years under 1 sun AM1.5 illumination, and 50°C operation.
- Fabrication of cells with uniform performance over 10 cm²

Team

Principal Investigator

- Stephen Forrest
- Graduate (PhD) Students
- Brian Lassiter (Growth and Device Fab)
- Richard Lunt (Growth)
- Guodan Wei (Device Char and Modeling)

Group Administrator

Beth Talbot

Mobility and Resistance Key to OPV performance

Organic Vapor Phase Deposition: Concept

Morphology control by temperature

Morphology control by flow rate

(fixed source and substrate temperatures)

150 sccm

200 sccm

N₂ flow rate: 100 sccm

Increasing carrier gas flow rate

125 sccm

	Crystals	Needle	Flat Uniaxial small
	Source temperature	Low	High
	Substrate temperature	High	Low
	Carrier gas flow rate	Low	High
	Chamber pressure	Low	High

Growth of nanocrystalline bulk heterojunctions by OVPD

Multilayer OVPD growth leads to nanocrystals

Analysis of OVPD-grown structure

Nano Xstal Efficiency vs Number of Layers

Nanocrystalline solar cell performance

11

MMPEI

Crystalline Solar Cells

Two Avenues:

- Previous Method: Epitaxial Growth in OVPD on Templ. Surface → stamp transfer i.e. CuPc/PTCDA solar cell (PTCDA = acceptor, CuPc = donor)
- 2) Melt Process 1 layer \rightarrow try to template subsequent growth
 - i.e. Melt NPD NPD/C60 solar cell (C60 = acceptor, NPD = donor)

Growth of Large Grain Crystalline Films (Method 2)

Organic Grown from the Melt \rightarrow Polycrystal and Single Crystal Films

Lunt, et al., Phys. Rev. Lett., **102**, 065504(2009). **13**

MMPEI

Expand Range Materials for Melting

- Difficult to Access Liquid Phase due to Vaporization/Decomposition

(i.e. Rubrene)

- Employ Concept of Organic Alloying to reduce melting point

Template Growth

Some coincident superlattice alignments (i.e. [3,1]C60 - 35° to [2,4] NPD)

Diffusion Length Measurement

Want method for measuring diffusion length with a single substrate → explore EDL of polycrystalline/single crystalline materials

Exciton Diffusion Lengths Measured

Material	Exciton	Crystallinity (Orient.)	L_D (nm)
NPD	S	Amorphous	5.1 (±1.0) *
CBP	S	Amorphous	16.8 (±0.8) *
SubPc	S	Amorphous	8.0 (±0.3)
SubPc-Cl	S	Amorphous	10 (±0.5)
PTCDA	S	Cryst - 35nm (flat)	8.2 (±0.3)
PTCDA	S	Cryst - 55nm (flat)	10.4 (±1.0)
DIP	S	Cryst - >150nm (upright)	16.5 (±0.4)
DIP	S	Cryst - 30nm (flat)	21.8 (±0.6)
PtTPBP	Т	Amorphous	5.7 (±0.5)
PtOEP	T - Mon.	Cryst - (upright)	18.0 (±0.6)
PtOEP	T - Aggre.	Cryst - (upright)	13.1 (±0.5)

* Corrected for Förster Energy Transfer

Crystallinity/Crystal size determined from x-ray diffraction

Crystal Orientation \rightarrow anisotropy (even for polycrystalline films)

- Next slide explore Diffusion Length in PTCDA as function of Crystalline Order

Lunt, et al.,J. Appl. Phys., (In Press) (2009).

Crystal Size - Exciton Diffusion

Preliminary Crystalline HJ Data

Amorphous: ITO/NPD(100Å)/C₆₀(400Å)/BCP(100Å)/Ag -----Crystalline: ITO/NPD(1000Å)/C₆₀(400Å)/BCP(100Å)/Ag -----

Preliminary Tandem Modeling

Preliminary Tandem Structures

Program Tasks

BUDGET PERIOD 1:

- •Demo. growth of a HJ with long range order
- •Demo. growth of crystalline HJ organic PV cell.
- •Begin measurement operational lifetime of crystalline cells
- •Establish activation energies for crystalline and microcryst. cells.

BUDGET PERIOD 2:

- •Demo. growth of an optimized, crystalline HJ PV cell
- •Demo. crystal cells with areas >10 cm^2 .
- •Demon. crystalline tandem cell with both visible and near infrared coverage.
- •(Efficiency targets: 10% @ 1 sun, AM1.5).

MMPE

Measure lifetime of crystal cells (objective >5 yrs).

Critical Milestones

[End of Program Year 2]

- Extrapolated Lifetime >1 year
- Power conversion efficiency: >4%
- Establish that long range order has been achieved, and results in increased exciton diffusion efficiency and charge mobility.

