U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

The world leader in II-VI material technology and innovation

High Efficiency Single Crystal CdTe Solar Cells

Dr. Michael Carmody

EPIR Technologies Inc. mcarmody@epir.com May, 2010

Program Team: PV

Objective

ENERGY Energy Efficiency & Renewable Energy

Long Term Goal:

- Develop high efficiency multijunction, single crystal II-VI/Si solar cells.

Preincubator Program Goal:

 Develop high efficiency single junction single crystal II-VI on Si solar cells.

Single Junction Cell Architecture

Program Overview

U.S. DEPARTMENT OF

Timeline

- Project start date: 11/19/2009
- Project end date: 11/18/2010
- Percent complete: 50%

Budget

- Total project funding: \$1,014,570
 - DOE share: \$500,000
 - Contractor share: \$514,570
- Funding received in FY09: \$0
- Funding for FY10: \$500,000

Barriers

- Barriers addressed
 - <u>Material Utilization and Cost:</u> Reducing the cost of concentrator solar cells
 - <u>Efficiency</u>: Increasing the efficiency of CdZnTe-based solar cells

Partners

• EPIR Technologies Inc. Bolingbrook, Illinois

Why High Efficiency II-VI on Si?

U.S. DEPARTMENT OF E

- 1. High absorption coefficient.
- 2. Ideal single junction bandgap (~ 1.5 eV).
- 3. Bandgap tunable from 1.5 to 2.24 eV ($Cd_{1-x}Zn_xTe$).
- 4. Higher accessible bandgaps than III-V's because of lattice matching issues.
- 5. II-VI devices appear to be less impacted by defects such as dislocations.
 - more ionic, less covalent nature of II-VI materials
 - greater screening that lowers the cross-section and capture rates of traps
 - impurity or defect states in more ionic materials should have substantially fewer deep energy levels and hence should not give rise to nearly as rapid carrier recombination (longer lifetimes)
- 6. Potential to grow on low cost large format substrates such as silicon.
 - lattice mismatch less important

Multijunction II-VI/II-VI/Si cells have the theoretical potential to reach higher efficiencies than their III-V counterparts because of the wider range of accessible bandgaps than the III-Vs.

Calculated Multijunction Cell Efficiencies (with $C = 3 \text{ mA/cm}^2\text{-}K^3$)								
II-VI Multijunction So	lar Cell Eff	iciencies	III-V Multijunction Solar Cell Efficiencies					
			(III-V junction <i>E_g</i> ≤ 1.88 eV)					
Cell (with Si optical path	One-sun	500-suns	Cell (with Ge optical path	One-sun	500-suns			
length and junction	efficiency	efficiency	length and junction	efficiency	efficiency			
energies)	(%)	(%)	energies)	(%)	(%)			
II-VI/Si (500 μm)	39.3	44 1	III-V/Ge (500 µm)	33.6	40.2			
1.78/1.12 eV	00.0		1.5-1.6/0.67 eV	00.0				
II-VI/II-VI/Si (500 μm)	45.3	51.5	III-V/III-V/Ge (500 µm)	36.2	43.6			
2.06/1.52/1.12 eV	1010	0110	1.68/1.18/0.67 eV	0012				
Inverted 3-junction	46.0	54 0	Inverted 3-junction	43.6	50.6			
1.96/1.40/0.95 eV	10.0	01.0	1.88/1.35/0.94 eV	10.0	00.0			

D. Xu et al., Appl. Phys. Lett. 96, 073508 (2010).

Potential Manufacturing Advantages of II-VI/Si vs. III-V/Ge Solar Cells

Energy Efficiency & Renewable Energy

- MOCVD Growth of III-Vs
- Gas-based delivery system using arsine, phosgene, etc.
 => safety precautions, regulatory approval difficult => added expense, slow expansion of capacity
- High maintenance, much down time => added expense
- Small area, expensive Ge, GaAs or InP substrates => higher cost
- Doping and contacting are well solved problems

• MBE Growth of II-VIs

U.S. DEPARTMENT OF

ENERGY

- Delivery system based on molecular beams => easier safety precautions and regulatory approval
- Much lower maintenance
 requirements and downtime
- Larger area, much less expensive and more robust Si substrates can be used
- Slower growth rate, but high throughput, ~24,000 6 in. wafers for Riber 7000 MBE machine (10 MW/yr at 500 suns, 4 MW/yr at 200 suns)

The II-VI V_{oc} Challenge

Single junction GaAs 1-sun efficiency record - 24.7% - 2008 IMEC Single junction CdTe 1-sun efficiency record - 16.5% - 2001 NREL

Current CdTe Thin Film Cells

low carrier concentration < 10¹⁵ cm⁻³ p-type
low minority carrier lifetime (< 10 ns)
V_{oc} significantly lower than bandgap predicts

 $E_g - qV_{oc}$ measures the intrinsic cell quality J_{sc} and FF depend on extrinsic factors

Energy Efficiency & Renewable Energy

How do we increase the V_{oc} of II-VI Cells?

Increasing V_{oc}:

- Higher carrier concentration
- Higher minority carrier lifetime
- Bandgap engineering

ternary Cd_{1-x}Zn_xTe

CHARACTERIZATION AND ANALYSIS OF CIGS AND CdTe SOLAR CELLS

Single Crystal CdTe

ENERGY Energy Efficiency & Renewable Energy

Highest reported CdTe V_{oc} (0.91 V) reported by 1987 by Nakazawa *et al.* for single crystal CdTe homojunction

Single Crystal CdTe Potential

- High crystal quality
- No-grain boundaries
- Doping control
- High minority carrier lifetime

Improved performance of single crystals demonstrated in other material systems and other II-VI PV devices

- 1. Bulk single II-VI crystal too expensive.
- 2. Need for epitaxial thin film single crystal CdTe.
- 3. Si ideal low cost large format scalable substrate if you can make it work.

Task 1: MBE growth and characterization of single-crystal epitaxial CdTe/Si.

- **Task 2:** Establish low resistance Ohmic contacts for n-type CdTe.
- Task 3: Perform controlled n- and p-doping in plain CdTe and measure the dopant

densities and carrier concentrations.

Task 4: Measurement of the CdTe minority carrier recombination lifetimes.

Task 5: Model the photon absorption and electrical carrier transport in CdTe/Si solar cells and their efficiencies.

Task 6: Fabricate CdTe p-n homojunctions and characterize them with I-V and C-V.

Task 7: Fabricate and test CdTe/Si homojunction solar cells.

The internal decision milestones:

- (1) Doping Development;
 - > 2×10¹⁵ cm⁻³ p-type
 - > 2×10¹⁶ cm⁻³ n-type

(2) Minority carrier recombination lifetime in p-doped material \geq 50 ns

(3) The achievement of a diode ideality factor < 2

(4) The achievement of a solar cell with an efficiency >10%

Architecture Approach

U.S. DEPARTMENT OF EI

Energy Efficiency & Renewable Energy

n-on-p homojunction in the single crystal CdTe or CdZnTe cell

Deposition Technology - MBE

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

13 | Solar Energy Technologies Program

ENERGY Energy Efficiency & Renewable Energy

Both p and n type doping control required for PV devices

Doping control traditionally a challenge in CdTe based cells.

- Cd vacancy influence on doping in CdTe
- Cd and Zn vacancy controls doping in CdZnTe

C-V Depth Profile of Vacancy Doped CdTe

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

n-type doped CdTe

00,00

program goal > 5e16 cm⁻³

*State of the art CdTe n-type mobility ~ 1500 cm²/Vs

1E+18

1E+17

1E+16

ENERGY Energy Efficiency & Renewable Energy

P-type carrier concentration measured at room temperature by C-V

Bandgap Engineering – $Cd_{1-x}Zn_xTe$

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Device Development Pathway

U.S. DEPARTMENT OF

Single Junction CdZnTe on Si

Measured under AM1.5

ENERGY Energy Efficiency & Renewable Energy

$$(E_g - qV_{oc}) - direct measure of cell quality$$

Red diamonds from R. R. King, Stanford Photonics Research Center Symposium, Stanford, CA, Sept. 14-16, 2009

Tandem Cell Development

Energy Efficiency & Renewable Energy

Early Tandem Cell Development at EPIR

CdZnTe top cell (Eg ~ 1.8 eV) – Voc ~ 1.3 eV Si – bottom cell – Voc ~ 0.45 eV

Voltage addition demonstrated on early EPIR tandem cell device

Related Work

Deliverable 1. (Complete) An epitaxial CdTe film on a 3-inch Si wafer representing the baseline of the proposed technology will be delivered during month one. The CdTe/Si wafer will be delivered with a high resolution XRD data mapping across the entire wafer to show the uniformity of the structural quality.

Deliverable 2. (Complete) A single-crystal, extrinsically doped *n*-type CdTe/Si piece cut from a 3" wafer with data obtained from adjacently cut pieces showing an n-type carrier concentration within the range 3×10^{16} cm⁻³ to 3×10^{18} cm⁻³.

Remaining 2010 Deliverables

Deliverable 3. on track (due June 18th) A single-crystal, extrinsically doped *p*-type CdTe/Si piece cut from a 3" wafer with data obtained from adjacently cut pieces showing a p-type carrier concentration within the range 3×10^{15} cm⁻³ to 3×10^{17} cm⁻³.

Deliverable 4. A single-crystal, extrinsically doped *p*-type CdTe/Si piece cut from a 3" wafer with data obtained from adjacently cut pieces showing a minority carrier lifetime longer than 100ns.

Deliverable 5. A prototype CdTe solar cell with a 15% efficiency will be delivered during month 12 – November 2010

Task	Month												
	Dec	Jan	Fe	b	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov
Quarterly Reports			Δ	7			Δ			Δ			A Final Report
Hardware Deliverables	Δ			×	Δ			Δ			Δ		Δ
CdTe/Si n-typ baseline Sam complete comp		n-type Sample omple	e e te	p-type Sample <mark>on-track</mark>		lifetime Sample <mark>on-track</mark>		¢	II-VI prototype Cell				
submitted complete								on-track					

- Total project funding: \$1,014,570
 - DOE share: \$500,000
 - Contractor share: \$514,570
- Funding received in FY09: \$0
- Funding for FY10: \$500,000
- Project is on time and on budget.
- Tasks to be added if additional funding were made available:
 - Multijunction cell development

a. CdZnTe growth and optimization

- b. Tunnel junction optimization Si/Si, Si/CZT and CZT/CZT
- Project ends in 2010. Thus no changes for 2011 exist.

- Single crystal CdTe and CdTe based alloys have the potential to dramatically increase the efficiency of single junction CdTe based solar cells with efficiencies comparable to single crystal GaAs cells.
- Single crystal CdTe and CdTe based alloys grown on Si have the potential to act as a platform for low cost high performance multijunction solar cells with theoretical efficiencies greater than comparable III-V cells.
- The Preincubator program is on track with all program deliverables met to date and the remaining program deliverables are on track to be delivered on time and on budget.
- Preliminary cell results serve as a proof of concept that the single crystal II-VI on Si approach is a viable technology pathway for future high efficiency cell development.

Program Performance Metric	Parameter or Deliverable	Status in FY09	Result in FY10	Notes
FHWM < 200 arcsec	Rocking curve FWHM CdTe/Si	Completed	NA	Sample delivered to NREL for verification
> 3e16 cm ⁻³	N-type carrier concentration	Completed	NA	Sample delivered to NREL for verification
> 3e15 cm ⁻³	P-type carrier concentration	In progress	In progress	Demonstrated Internally – samples to be sent to NREL for verification June 2010
> 50 ns	Minority carrier lifetime	In progress	In progress	Working with NREL to test
> 15%	Single junction cell efficiency	In progress	In progress	Demonstrated preliminary devices