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Overview

• Project start date:  July 1, 2008
• Project end date: June 30, 2012
• Percent complete:         31%

Timeline

Budget: Two Projects
1) PV materials development
2) High value chemicals from 

bio-based feedstocks

Barriers

• Interactions/ collaborations
– U-Toledo: liquid silane

transformation to a-Si:H
– UC-Riverside: electrocatalyst

development for fuel cells
• Project lead: ND State University

– Dr. Phil Boudjouk

Partners

• PV Barriers addressed:
– A.  Materials utilization and cost: 

develop liquid silanes as a low-cost, 
printable precursor to intrinsic and 
doped a-Si:H, silicon nitride

– C.  Manufacturing processes: 
develop new deposition technologies 
compatible with liquid silane precursors

• Total project funding received
– DOE share: $10.66M
– Contractor share: $2.67M

• Funding received in FY09: $4.76M
• Funding expected for FY10:   $5M

This presentation contains no proprietary, confidential, or otherwise restricted information
North Dakota State University
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Challenges, Barriers or Problems

This University Product and Process Development Support 
project seeks to:

• Develop new liquid silane chemistries with applications in new and 
existing manufacturing schemes; and,

• Optimize deposition processes to take best advantage of liquid silanes in 
fabricating device heterostructures.

Barriers Addressed
• Materials Utilization and Cost: Improve the synthetic yield of Si6H12, 

cyclohexasilane; develop molecular precursors to intrinsic and doped a-Si:H, 
Si3N4; provide samples to industrial PV developers for evaluation; assess 
production costs; engage chemical manufacturers for synthesis scale-up. 

• Manufacturing Processes: Utilize/optimize collimated aerosol beam-direct 
write, low-pressure and atmospheric-pressure CVD/PE-CVD, and electrospinning
processes to deposit thin/patterned films and nanowires from liquid silanes.

Note: this is applied R&D toward transition to pilot-scale manufacture

North Dakota State University
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Objectives for Previous Reporting Period
– Synthetic yield:  significantly improve the yield of cyclohexasilane (CHS), 

an important step in lowering cost of production 
• >70% yield now routinely achieved

– Introduce p- and n-type dopants: modify the chemistry of CHS to enable 
thin film deposition of intrinsic a-Si:H, doped a-Si:H, Si3N4, SiOCN
• promising CHS derivatives developed

– Demonstrate advantages of CHS in depositing a-Si:H thin films:
• substantially higher deposition rates achieved by PE-CVD using Si6H12 than 

lower order silanes
– Demonstrate deposition of patterned a-Si:H using CHS precursor:      

• ~7 µm lines routinely achieved by collimated aerosol beam-direct 
write (CAB-DW)

• CAB-DW used to deposit metallic fine-pitch metal current collector lines with 
pyramidal shape

– Demonstrate conversion of CHS films and lines to a-Si:H and r-Si:        
• a-Si:H and rc-Si produced thermally and by UV irradiation

Relevance

North Dakota State University
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Supporting EERE Solar Program and DOE R&D Objectives

Wafer-silicon: Heterojunction with Intrinsic Thin Layer (HIT) Cells [Sanyo]
– Minimize grid shadowing; direct-write Ag µ-pyramids (total internal reflection)
– Maximize throughput; high-rate a-Si deposition via CVD of Si6H12

Film-silicon: MicroMorph a-Si:H/µc-Si:H [Kaneka]
– Manufacturing process integration: atmospheric-pressure printing of Si6H12

– Deposition of a-Si:H, c-Si, SiOCN (antireflection)
– Atmospheric-pressure PECVD of ZnO:Al

Basic science-related: Emerging Concepts
– Si Cluster Discovery – new physics 

• Laser ablation / time-of-flight mass spectroscopy
• Solution-phase growth of M@Six using Si6H12-related synthons

– Electrospinning porous a-Si nanowires
– Si nanocrystals and colloids from Si6H12 / -(SiH2)n- inks
– Inorganic-inorganic heterojunctions

Relevance

North Dakota State University
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• Evaluate Si6H12 as a replacement for SiH4
– Higher growth rates with higher-order silanes can reduce bottlenecks

• PECVD and LPCVD of a-Si:H, µc-Si, Si3N4

– Lower temperature growth with Si6H12 can enable temperature-sensitive substrates 

• Evaluate Si6H12 as a liquid precursor to Printed Si
– Spin coat films to understand stresses during transformation from polymer to a-Si:H

• What is the upper thickness limit for uncracked spun coated films?
– Electrospinning 100 to 2000 nm diameter porous a-Si:H wires

• Develop Si6H12 and derivatives as molecular precursors to intrinsic and doped 
a-Si:H and Si3N4 thin films and patterned structures
– Atomically distribute n- and p-type dopants by attaching P- and/or B-containing chemical 

functionalities to the Si6H12 ring prior to ring-opening polymerization
– Formulate a single-source precursor that yields Si3N4 (with good H-levels) after thermoloysis
– 7 µm-wide printed silicon lines using collimated aerosol beam direct-write (CAB-DW)

• Evaluate atmospheric-pressure PECVD in Si solar cell structures
– Deposit ZnO:Al transparent conductors using solid-source precursors
– Deposit SiOCN anti-reflection coatings using commercial sources and Si6H12

Approach

North Dakota State University

Unique aspects of the CNERM technical approach
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Approach

North Dakota State University

PV Barriers Addressed
– Materials utilization and cost 

• Evaluate processing advantages of CHS versus production costs 
– Manufacturing processes

• Develop thin film and printed line deposition technologies
• Emphasize atmospheric-pressure and low temperature methods that take advantage of Si6H12 properties

Integration with Program
– NREL informal interaction

• Partially competed cells obtained from NREL to test printed grid electrode approach for HIT cells
– U-Toledo

• Thin film spectroscopic ellipsometry studies, transparent SWNT films, carrier dynamics analyses 
– Commercial PV developers
– Chemical manufacturers 

Key milestones and go/no-go decisions
– Develop CHS derivatives that can be converted into n- and p-type thin films 
– Fabricate heterojunction solar cell by PECVD with CHS precursors
– Demonstrate heterojunction solar cell that uses APPECVD to grow the intrinsic layer
– Deposit quality silicon nitride antireflection layers using Si6H12 in PECVD
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Accomplishments / Progress / Results
Cyclohexasilane Si6H12 Chemistry

P. Boudjouk, et al. J. Am. Chem. Soc. 2001, 123, 8117.

Amine-promoted disproportionation and redistribution: Si-Si bond formation
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North Dakota State University
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Accomplishments / Progress / Results
Adduct Chemistry of Si6X12 (X= Cl,Br)
Molecular Halogenation of Si6H12

Lewis Acid-Base Adducts of Si6X12

Si6Br12

Si6Br12.2 p-tolunitrile

Boudjouk, P. et al., “Inverse Sandwich” Complexes of Perhalogenated Cyclohexasilane, Organometallics, 2010, DOI: 10.1021/om1000716

Si6X12 (X=Cl,Br)
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“New Landscape in Si Chemistry” forms basis of a route to Si6-based molecular wires

North Dakota State University
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Accomplishments / Progress / Results 
Si6H12 Precursor to Si-based Materials

Typical Ink Formulation
-[Si(H2)]n- & Si6H12 in toluene
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Si6H12, polymethylmethacrylate in toluene C7H8

North Dakota State University
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Accomplishments / Progress / Results
Doping Printed Silicon

Intl. Symp. OrganoSilicon XV-Jeju 06/02/2008

Ring-Appended Dopants (covalent Si-P bond)
Si6H12 +  HgCl2  Si6H11Cl  (60%)

-(Si(H2))n- polydihydrosilane
April 2008 – March 2010

Si6H11Cl + KPH2
or LiAl(PH2)4 or iBu2AlPH2

Si6H11PH2

Gaseous Ex-situ Dopants Diffusion of B (or P) in Polyhydrosilane Films

1. Low-Temp “Polydihydrosilane” Film Deposition 
a. Spin-coating, CAB-DW or low-temperature PECVD/CVD/APPE-CVD

2. Thermal Treatment at 80 to 450 °C with Flowing Hydride (B2H6 or PH3)

Jan 2010 to present

Other Dopant Results: remain confidential

Gas Inlet

Gas Outlet

Sample 
Chamber

Activation Energy of B
Si ~3.8 eV
a-Si ~3.0 eV
-(SiH2)n- not established

North Dakota State University
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Accomplishments / Progress / Results 
Si6H12 precursor in PECVD
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Accomplishments / Progress / Results
PECVD at 760 Torr

Single Crystalline Si PV Process Precursors
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North Dakota State University
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Accomplishments / Progress / Results
Aerosol Printed Back Contacts - Ag

Prototype HIT Test Structure*

Linewidth Measurements/Pictures

Average Height:    2.52µm
Average Width:     8.398µm
Average Area:        10.07µm2

Average Height:    9.62µm
Average Width:     29.09µm
Average Area:        102.67µm2
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*Uncontacted Cells Courtesy Eugene Iwaniczko, Matt Page and Qi Wang

NDSU’s Three-Nozzle CAB-DWTM

Geometry: Total Internal Reflection

FF < 60%

Promising Initial Results
NREL multiuse chamber 
being cleaned to yield 
higher fill factor devices

305 um

Sputtered Back Contact 
Ti 1.5 nm/Ag 1000 nm/Pd 100 nm

Ag Grid Electrodes
(CAB-DW)

Silicon Hetero-Junction Solar Cell

60 nm ITO

North Dakota State University



15 | Solar Energy Technologies Program eere.energy.gov

Accomplishments / Progress / Results
Aerosol Printed Back Contacts - Si

Optical Micrographs of Printed Silicon via CAB-DW Of Si6H12-based Ink  
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Previous Studies: Limited to T < 400 °C; Focused Mainly on Low-Temperature Dopants

From Birkmire et al. (Inst. Energy Conversion @ University of DE) 
http://www.udel.edu/iec/Publications/22nd_EU_PVSEC_2AO31.pdf

North Dakota State University

Potential Technology Pathway Partnership
Printed Si interdigitated back contact 

silicon heterojunction solar cells
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Future Plans (FY 2011 and beyond)

North Dakota State University

• Improve the synthetic yield of Si6H12 toward 90%. 

• Develop molecular precursors to intrinsic and doped a-Si:H as well as Si3N4.

• Provide samples to industrial PV developers for evaluation.

• Assess production costs; engage chemical manufacturers for synthesis scale-up.

• Gain a refined understanding of Si6H12-based inks formulation toward reproducibility.

• Determine relevance of porous amorphous silicon nanowires.

• Investigate the formation of germanium-containing spherical silicon.

• Determine if printed silicon lines are candidate absorbers for microconcentrator PV.

• Consider a 500 MW/yr PV manufacturing strategy plant that employs NDSU 
technologies as enabling steps in a wafer-Si plant to be setup in ND’s Cass county in 
the 2017 timeframe.
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• University of Toledo – Subawardee FY 09-10
– Mike Heben, Randy Ellingson and Rob Collins (Wright Center for PV Innovation and Commercialization)
THEMES AND STATUS

Ellipsometry of polysilane to a-Si:H transition, Liquid silanes + SWNT films, carrier lifetimes
• Si6H12-derived a-Si:H (NDSU) and SWNT (UT) thin film samples exchanged
• Initial PL of liquid silane-derived film consistent with the literature

EXTENT OF INTERACTION
– Semi-annual site visits, weekly conference call

• Iowa State University – Subawardee FY11
– Sam Houk, Javier Vela and Vik Dalal
THEMES AND STATUS

Laser Ablation TOF-MS for Cluster Discovery, Low-bandgap Pb NCs, a-Si:H Film Development
• Subaward included in the FY11 Submission to DoE by NDSU
• Formal (Houk, Vela) and informal (Dalal) exchanges envisioned

Business Development 
• Fine Chemical Manufacturers – targeting a partner for Si6H12 production

– Ongoing discussions with several producers; one active collaboration at the moment
– Ongoing discussions with printed silicon PV “end-users”; one active collaboration

Collaborations

North Dakota State University
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• The NDSU Center for Nanoscale Energy is a University P&P with several new 
technologies that are being validated

• NDSU CNERM has been proactive in pursuing relationships with industry, 
university and national labs to facilitate the pace of development; developing a 
niche within the PV innovation pipeline

• Research progress:
– Significantly improved the synthetic yield of CHS, critical in lowering the cost of production
– Demonstrated substantially higher silicon deposition rates using PE-CVD and CHS precursors than 

achievable with lower order silanes
– Discovered unusually high Lewis acidity at sites within the CHS ring, responsible for formation of 

unique adducts
– Collimated aerosol beam-direct write technology enables ~7 micron lines of a-Si:H to be written 

routinely.  Technology enables fine-pitch metal current collector lines to be deposited with a 
pyramidal shape

– Conversion of CHS films and lines to a-Si:H and rc-Si demonstrated

• Key milestones:
– Optimize methods to introduce dopants at targeted levels into CHS, to be utilized in preparing 

silicon thin films and lines
– Demonstrate deposition of silicon nitride antireflection coatings at atmospheric pressure using CHS 

precursors
– Create heterojunction solar cells utilizing CHS precursors

Mandatory Summary Slide

North Dakota State University
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