Assessment of Silicon Nanowire Architecture for PV Application

S. Tom Picraux, Ian Campbell, Shadi Dayeh, LANL
David Evans, Paul Schuele, SLA
Overview

Timeline

- Project start date: Jan. 2010
- Project end date: Dec. 2012
- Percent complete: 10%

Barriers

Project assesses two key barriers to Si nanowire (nanopillar) photovoltaics:
1. Achieving high PV efficiency (assess potential efficiencies via metal-catalyst-free structures).

Budget

- Total project funding: $1,049,443 (FY10-13)

Partners

- Project lead: Los Alamos National Laboratory
- Project partner: Sharp Laboratories of America
Objective: The objective of this project is to experimentally determine whether silicon nanowire solar cells can achieve performance close to that of crystalline silicon cells but with the much lower costs of thin film, amorphous Si solar cells.

Impact: The above performance would lead to a new class of high quality, crystalline solar cells with a cost of ~$0.5/W and a module levelized cost of energy (LCOE) reduced by ⅓ to ½ from current silicon photovoltaic technology.
Potential benefit

Levelized Cost of Energy analysis

(Based on NREL – LCOE calculator)
Solar energy harvesting concept

Decouple light absorption and carrier collection
Challenges, Barriers or Problems

There are two closely related areas of risk which could impact the objectives of the nanowire PV concept:

1. It may not be possible to grow silicon nanowire PV cells on flexible substrates with single crystal silicon quality performance (efficiency) and sufficient wire density; and

2. The total expense of fabricating crystalline silicon nanowire PV cells may be too great to achieve the low-cost benefits of a thin film approach.

This project has been structured to assess and mitigate these potential barriers throughout the course of the work.
1. Metal-catalyst-free Si pillars will be fabricated by top-down methods and radial p-i-n nanowire PV devices grown by CVD processing to assess the ultimate efficiencies which may be achievable by a radial nanowire solar cell approach.

Nanowire growth of single crystal Si pillars will rely on metal-catalyzed growth. Questions on the influence of metal contamination on observed efficiencies are difficult to separate from inherent issues of architecture design of achieving high efficiencies. Our approach will bypass the metal issue for assessing ultimate efficiencies and optimal designs.

2. Silicon nanowire p-i-n PV devices will be grown by the bottom-up CVD approach on flexible stainless steel substrates to assess the potential for industrial scale manufacturing of nanowire solar cells.

Nanowire growth of single crystal Si pillars is readily achieved on crystalline substrates. To achieve low cost and large scale manufacturing similar to thin film approaches for commercial viability it would be a great advantage to grow the nanowires directly onto flexible substrates. Our approach will assess the viability of low cost, direct growth methods of achieving high efficiency PV cells on flexible substrates.
Collaborations

• Industrial Partner: Sharp Laboratories of America
 David Evans, Program Manager;
 Paul Schuele, Principal Integration Engineer

• Contractual Relationship
 – Subcontract issued to SLA (May, 2010)
 – CRADA established with SLA (May, 2010)
Accomplishments / Progress

1. Nanowire Pillar Array Design

Objective

1. Form dense silicon nanowire arrays by combined top-down and bottom-up growth to study optical interactions and recombination lifetimes

Top-down ordered array of nanowires

Radial doped processing (core-shell)
Accomplishments / Progress

1. High aspect-ratio fabrication

Goal: To develop a top-down approach using a deep reactive ion etch (DRIE) to fabricate tall (10 - 100 μm) microwires using a non-metal etch mask.

Approach: Use Bosch etch chemistry

Latest Results:

- Maintain nearly-straight sidewall profiles with minimal surface roughness by developing a dynamic etch process (etch parameters are modified throughout the process).

Smooth Si pillar fabrication
Accomplishments / Progress
1. High aspect-ratio nanowire arrays

SEM image of large area, top-down, dry-etched perfect Si nanowire array

As etched
Polymer free
Metal free / epi-ready

Easy access to different aspect ratios: <1 up to 30.

Si pillar arrays for p-i-n growth demonstrated
Accomplishments / Progress

1. Nanowire array optical properties

- **Calculate optical properties of Si NW arrays**
 - Calculate optical properties using Finite Difference Time Domain methods (Lumerical Solutions, Inc.)
 - Computational technique describes multiple scattering important in NW arrays

Si substrate (semi-infinite)

Si NW array on Si Substrate

diameter = 2 µm, length = 2 µm, spacing = 3 µm

Si NW array on Si Substrate

diameter = 0.5 µm, length = 20 µm, spacing = 0.75 µm

"Noisy" appearance of calculated absorption due to finite spatial and temporal discretization

Si arrays dramatically reduce reflection compared to bare Si substrate

- Low reflection is critical for efficient solar cells
Accomplishments / Progress

1. Nanowire Pillar Arrays

• Calculate ideal optical performance of Si NW devices
 – device geometry assumes Si NWs grown on metal substrate

Si NW device
 - diameter = 0.5 \(\mu \text{m} \), length = 10 \(\mu \text{m} \), spacing = 0.75 \(\mu \text{m} \)

Ideal Si film
 - thickness = 20 \(\mu \text{m} \)

Si NW devices have dramatically increased absorption at long wavelength
 – This is critical for Si, \(~50\%\) of useable (above \(E_g \)) solar photons are at wavelengths > 0.7 \(\mu \text{m} \)
Accomplishments / Progress

2. Substrates & 3. Prototypes

Objectives

2. Synthesize bottom-up silicon nanowires on low-cost flexible substrates and establish limitations

3. Fabricate and test solar cell prototypes
2. Substrate Requirements

- Withstand the temperature of Si nanowire growth > 600°C
- Polished surface with roughness better than 100 nm
- Oxide base coat to prevent diffusion of metals from substrate to cell
- Heavily doped p-type silicon backside electrode
- Scalable to manufacturing using roll-to-roll process tools
2. Substrate Requirements

- Low cost 304 stainless steel substrates for Si nanowire photovoltaic fabrication
 - 500 um thick 150mm diameter wafers: Substrates are rigid and highly polished to minimize handling and surface roughness problems. Basic process development can take place without the effects of substrate distortion and surface roughness. Compatible with prototype fabrication tools at SLA and LANL
 - 125 um thick 100 mm diameter foils: Substrates are flexible with a more roughness so they are handled on carriers
 - The ultimate production target would be a foil about 25 um thick for roll-to-roll processing.

- The initial substrate preparation process is based on LCD display experience.
 - Stainless steel foil is cleaned to remove polishing residue.
 - Low temperature PECVD TEOS films deposited on both sides to prevent warping and out-diffusion of metals.
 - The active contact and nanowire growth initiation layer will be heavily boron doped low temperature PECVD poly-Si.
 - Poly-Si grain structure tuned by deposition temperature, anneals or laser crystallization to optimize wire growth.

Substrate design for Si NW growth is established
Future Plans

FY10
• Fabricate NW arrays for optical measurements and compare to calculated designs
• Establish process for radial p-i-n epitaxial layer synthesis for PV cells
• Prepare stainless steel substrates for NW growth

FY11
• Optimize NW array geometry for PV cells
• Calculate and measure PV response of single NW devices and compare to arrays
• Fabricate NW arrays for PV cells on flexible substrates and measure response
• Design and simulate optimized solar cell based on material and device results

FY12
• Fabricate and measure optimized PV cell performance
• Assess ultimate commercial viability of NW solar cell approach
• Top-down Si pillar arrays will allow assessment of nanowire PV concept for high efficiency solar cells.
 – Smooth, large area pillar array fabrication process established.
 – Optical design of high aspect ratio pillar arrays to dramatically reduce reflection and increase absorption at long wavelengths being developed.

• Bottom-up growth of Si nanowire arrays on flexible substrates will allow assessment of viability for low-cost manufacturing.
 – Design requirements for flexible stainless steel substrates developed