U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Photovoltaic (PV) Inverter and BOS Development & Testing

for the DOE Solar Energy Technologies Program Peer Review

Ward Bower, Sig Gonzalez, Michael Ropp Sandia National Laboratories

Denver, Colorado April 17-19, 2007 wibower@sandia.gov

PV Inverters and BOS RELEVANCE

Advanced Inverter & BOS Designs & Performance Are Essential For A Successful USA PV Industry!

Contribution of 5 kW Inverter to LCOE - Phoenix

- Advanced inverters/BOS are will improve system reliability, efficiency, LCOE
- The lifetime of the inverter should match that of PV modules and other BOS
- The goals of development and testing are consistent with the "Solar America Initiative" goals for LCOE (\$.05 \$.10/kWh)

Improved Inverter & BOS Designs & Performance

AOP tasks included:

•1) Inverter/BOS Performance Modeling and System Test Protocol Development,

- •2) Applied R&D Industry Support
- •3) Technology Acceptance
- Focus on power electronics/hardware advances through R&D, characterization and validations
- Feedback to industry
 - Encourages technology advances
 - Incorporation of new inverters/BOS into completely integrated systems
- Work tied to priorities derived from:
 - "DOE Workshop On a SDA to Inverter R&D"

"DOE High-tech Inverter"
Workshop

• SETP MYPP.

SNL-directed Technology Development was Driven by Well-documented and Well-defined Requirements

- Coordinated with the industry/users
- Requirements based on present/potential markets and consumer/utility values
- Technology/R&D trade-off considered/prioritized via workshops and industry input
- "Testing and Evaluation" is prioritized to meet the goals of the PV program <u>AND</u> the industry needs.

- 1. Inverter/BOS <u>Hardware Development</u> [(HRII) (Micro-inverter)]
- 2. Inverter/BOS Performance, Validations and Analysis
- 3. Long-term Performance <u>Test/Characterization</u> of Inverters
- 4. Inverter/BOS Modeling and Protocol Development (PVSoL)
- 5. Applied Development with <u>Support & Collaboration</u> with Industry
- 6. Technology Acceptance Via Codes, Standards & Certification Development and Technical Validation
- 7. Solar America Initiative Application *Evaluations*

PVSoL Inverters Under Long-term Tests

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Inverters and BOS Development gy and affordable ACCOMPLISHMENTS

The High-reliability Inverter Initiative (HRII)

- General Electric and Xantrex <u>Completed</u> HRII Phase III
- SNL <u>Provided</u> Technical <u>Leadership</u> along with Complex Prototype <u>Evaluations/Analysis</u> To Inverter/BOS Industry
- Micro-inverter Topology <u>Feasibility</u> & <u>Concept</u>

Validation Completed

General Electric

- General Electric delivered its Phase II prototype to SNL for validation.
- GE Performed Preliminary Evaluations on its Phase III Prototype
- SNL benchmark evaluations and validations resulted in
 - Design improvements
 - Changes for the upgraded prototypes that were reevaluated before designs moved on to the Phase III

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Inverters and BOS Results of GE Effort

Requirement	Result		
MTBF >10 Years	Calculated better than 12 years		
Efficiency > 94%	Peak efficiency near 94% (93.5% final design)		
UL 1741 Certification	Preliminary design analysis only (UL delays)		
Meet FCC Part 15, Class B	Exceeds requirements		
DC/AC disconnects per NEC	Meets contractor's system requirements		
Heavy duty power connections	Beta prototype showed improvements		
DC and AC over current protection (150% for 30 seconds)	Innovative smart IGBT and DSP software solutions have been implemented		
Non-volatile memory	Fully functional		
Surge protected per IEEE C62.41	Conducted at manufacturer's facility only		
Cost of < \$.90/watt (at quantities of 10,000/year)	Met and was better than "cost target" Note: Cost was not an initiative priority		
TDD (total demand distortion) < 5%	Meets the IEEE519 requirements		
Compliance w/ IEEE 929 (IEEE1547)	Meets the IEEE929 requirements (Now 1547)		
Contract Status	Completed beta model & tested @ SNL. Completed gamma model and tested @ GE. Funding & redesign delays had negative impacts. GE is designing a more competitive inverter.		

GE HRII Advances Summary

- GE initiated, developed and continues with its total system concept of vertically integrated PV systems for the new construction market
- The design integrated internal protection (IGBT), innovative DSP controls, wide (dual input) PV operating window and active communications
- The inverter development was a pioneering project for transformerless inverters in the U.S.
- GE continues improvements in cost and efficiency with a high reliability/lower cost focus
- Results of the work (12-year MTBF) is a major step toward the SAI (LCOE) goals

Inverters and BOS Accomplishments

Xantrex

- Xantrex delivered its Phase II and Phase III inverter and charger prototypes to SNL.
- SNL benchmark evaluations/validations resulted in
 - Improvements in MPPT, anti-islanding, thermal layout, hardware & control methodologies
 - Changes for upgraded prototypes were reevaluated before design moved to Phase III

alan — waqad — baland — baqa

Inverters and BOS Results of Xantrex Effort

Requirement	Result		
MTBF >10 Years	Calculated @ better than 10 Years		
Efficiency > 94%	Peak efficiency is near 94%-(93.5 U-I) Exceeds all known S-A inverter efficiencies.		
UL 1741 Certification	Listed through ETL and CSA 107.1		
Meet FCC Part 15, Class B	Exceeds requirements		
DC/AC disconnects per NEC	Meets contractor's system requirements		
Heavy duty power connections	Innovative XW packaging; IMS Power Ckts.		
DC and AC over current protection (150% for 30 seconds)	Surges to 200% with stand-alone MPPT for both S-A and U-I		
Nonvolatile memory	Fully functional		
Surge protected per IEEE C62.41	Conducted at manufacturer's facility only		
Cost of < \$.90/watt (at quantities of 10,000/year)	Met and was better than "cost target" Note: Cost was not an initiative priority		
TDD (total demand distortion) < 5%	Meets the IEEE519 requirements		
Compliance w/ IEEE 929 (IEEE1547)	Meets the IEEE929 requirements (Now 1547)		
Contract Status	Xantrex has completed commercial design. Final testing @ SNL in Nov 2006. Funding & redesign delays had negative impacts.		

Xantrex HRII Advances Summary

- Initiated, developed and continues with system concept of vertically integrated PV systems for any combination of battery based SA+UI applications
- The inverter used insulated-metal substrate (IMS) for robust circuit boards, "Xanbus" communications for interface/controls and new, innovative DSP controls
- The Xantrex inverter development will be used as the product base for many new Xantrex products
- Commercialization of the XW series of products is a giant step toward fully-integrated systems

Resulting Xantrex Commercialized HRII System Product

Industry Support (Tests, Evaluations, Product Development)

- Key Alpha and Beta Inverter Tests and Evaluations for Industry Development
 - 1. Beacon Power M5
 - 2. Xantrex GT
 - 3. Solectria (2500)
 - 4. PVPowered (2800XV)
 - 5. PVPowered (30kW)(3phase)
- Industry Received Support and Analysis of Inverter Operations and Performance

Modeling, Long-term Tests and Protocols

- Completed PVSoL Benchmark Characterizations (5 Inverters)
- Data Provided Input for Inverter "Performance" Model (PV SAM)
- Data Supported SNL (MATLAB/Simulink) Inverter "Development Model"

Commanded

lout,pk

SNL MATLAB/Simulink Inverter "Development" Model

Convert CtZ block

output to

-1 or +1

P(u)

O(P) = 1

double

- Models MPPT controls
- Simulates PV Array ulletResponses
- **Simulates Safety** ulletResponses
- **Supports Standards Development**

MPPT

increment

Saturation

Sandia

-1 Z

Integer Delay2

Product1

-1 Ζ

Integer Delav1

April 17, 2007

<u>All CPS Milestones/Deliverables Were Met Or Significantly</u> <u>Advanced as They Were Folded Into The SAI</u>

Agreement ID		Title	AFP Recipient	Prime Awardee				
9786		High Reliability Inverter Initiative-Base	Sandia National Laboratory (S	onal Laboratory (SNL) Sandia I			National Laboratory	
9790		Inverter Development & Manufacturing R&D	Sandia National Laboratory (S	SNL) Sandia National Laborator			oratory	
Milestone ID	Title	9		Planr Comp	ied blete	Actual Complete	Status	
23481	Conduct High-tech Inverter, BOS and Systems Integration Project as the initial phase of the "High-tech 5-year Strategies"			9/30/2006		9/22/2006	Complete	
25068	Complete prototype and component evaluations and verifications to establish and verify high-reliability inverter performance and characteristics.			2/1/2006		2/1/2006	Complete	
25179	Complete High-reliability commercialized inverter designs and verifications of performance and design.			12/29/2006		3/15/2007	Complete	
25180	Initiate contracts for "High-tech Inverter, BOS & Systems R&D Strategies" concepts that will seek to combine inverter R&D with new electronic technologies and integrate designs into complete systems.			9/30/2	2006		To SAI	
25181	Report on High-tech Inverter to Systems Workshop			12/29	/2006	12/29/2006	Complete	
25249	Send Request for Proposals for High-tech R&D			9/30/2	2006		To SAI	
25250	Review and Select winning proposals to initiate high-tech R&D strategies			9/30/2	2006		To SAI	
25251	Conduct High-tech Inverter to Systems Link Workshop			9/28/2	2006		To SAI	
25252	Complete Final Reports on High-reliability prototypes, evaluations and verifications with commercialization plans			9/30/2	2006	2/1/2007	On Track	

<u>All CPS Milestones/Deliverables Were Met Or Significantly</u> <u>Advanced as They Were Folded Into The SAI</u>

Agreement: PV System Performance Testing, Modeling, and Aging (Agreement ID: 13574)

Milestone ID	Title	Plan Complete	Actual Complete	Status
25413	Complete and document baseline performance of five commercial inverter types used in initial phase of long-term inverter performance evaluation at SNL, FSEC, and SWTDI.	1/1/2006	11/1/2006	Complete
25414	Joint report with FSEC and SWTDI describing new inverter aging and performance characterization capabilities and procedures.	6/1/2006		Individual Reports
25415	Continued effort to develop and improve a general performance model for inverters including characteristics associated with dc/ac efficiency, MPPT effectiveness, start up, shut down, power limiting, thermal derate, and power factor.	9/30/2006		On Track & to SAI

Agreement: Codes, Standards, and Certification (Agreement ID: 13493)

Milestone ID	Title	Plan Complete	Actual Complete	Status
25041	Support Practitioner Certification through incremental funding for NABCEP.	8/1/2006	Ongoing	Complete
25042	Provide Proposed National Electrical Code Changes per the SNL Industry Forum to the National Fire Protection Association	11/4/2005	12/6/06	Complete
25253	Submit Revised Inverter Performance Certification Protocol for IEEE or IEC Standard Consideration	9/30/2006		On Track & to SAI
25254	Initiate PV Module Performance Certification Forum	12/1/2005	On Going	To SAI

SNL Project Areas	FY06 \$K	FY07 \$K
Inverter/BOS Development, Manufacturing R&D, & Testing	380*	1000*
System Performance Optimization, Modeling, and Benchmarking	835	850
Module, Array, and System Manufacturing, Reliability, Test and Evaluation	300	1500

*Relates to information provided in this presentation

U.S. Department of Energy Energy Efficiency and Renewable Energy

Inverters/BOS/Systems & Energy , Management - Future Directions

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

- TPPs will likely produce EVOLUTIONARY and short-term inverter advances.
- However "REVOLUTIONARY (leap-frog) Changes" are needed.
- "Advanced Integrated Inverter & Energy Management Technology Initiative" will:
 - Fill critical inverter/integration gaps
 - Provide complementary, long-term inverter/system development utilizing new (high-tech) technology advances and like-technology synergisms
 - Complement critical technical issues (TIOs) such as building integration, surge protection, thermal management, communications, magnetics, advanced semiconductors, packaging, materials compatibility, and safety.
- DOE Headquarters and SNL developed a 5-year initiative (1st Workshop at SETP Program Review 4/17-19/07)
- The 5-year plan will include workshops to solicit inputs. Technical workshop (May 10-11, 2007, Albuquerque, NM) will contribute to needs/priorities.

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

