

2022 Annual Merit Review Cummins/Peterbilt SuperTruck II

Jon Dickson- Principal Investigator, Cummins Inc.

David Mielke– Peterbilt Motors Company
23 June 2022
Project I

Project ID:ACE102

Overview

<u>Timeline</u>

- Begin: 10/1/2016
- End: 9/30/2022
- 92% complete

Budget

- Total Project: \$40M
- \$20M DoE + \$20M Partners
- Total Spent: \$39M
 - \$19.5 = Partners
 - \$19.5 = DoE

Barriers

- Engine Efficiency ≥ 55% BTE
- Freight Efficiency ≥ 100% FTE
- Cost effective solutions

<u>Partners</u>

- Cummins Powertrain
 - Eaton Transmission LUTOMATED TRANSMISSION
- Peterbilt Vehicle Peterbilt
- Bridgestone Tires **Zrivcestone**
 - Walmart Customer counsel

Relevance: Objectives

- Demonstrate a <u>minimum</u> of 55% BTE at a 65 mph cruise, on an engine dynamometer test stand
 - Same engine systems also demonstrated in vehicle, operating on real world drive cycles
- Achieve a <u>minimum</u> of 125% Freight Ton Efficiency (FTE).
 - FTE = MPG*Tons of Freight
- Track, promote and report on cost effective solutions
 - Prioritize solutions that have ~3-year payback period
 - Utilize customer counsel for understanding payback variables

Relevance: Energy Consumption

- Approximately 20% of U.S. transportation petroleum goes to the production of heavy truck fuel. Proposed improvements would save more than 400 million barrels of oil per year.*
 - Reduce imports and improve energy security
 - Reduce the cost of moving goods
- Heavy Truck GHG emissions account for a CO2 equivalent 420.7 MMT per year (35th edition of the Transportation Energy Data Book).
 - Improve air quality
 - Protect the public health and environment

^{*} https://energy.gov/eere/vehicles/vehicle-technologies-office-moving-america-forward-energy-efficient-vehicles

Milestones by Quarter

FY 2021	Description
Complete Freight Efficiency Demonstration Engine Build	Ready the engine for final calibration
Begin Freight Efficiency Demo Chassis Build	Begin assembly and population of the frame system
Complete Freight Efficiency Demo Engine Calibration	Prepare the engine, WHR system, and 48V mile hybrid system for the demonstration vehicle
Complete engine installation into FTE Demo chassis	Installation of the engine into the freight efficiency demonstration vehicle

Milestones by Quarter

FY 2022	Description	
Complete Freight Efficiency Demo Truck Build	Truck built and ready for calibration	
Complete on road calibration	Adjustments to powertrain and active aero for demo vehicle	
Completion final freight efficiency demonstration	Demo route and performance tests	
Complete final report	Full system final report	

Program Level Milestones Peterbilt All proposed future work is subject to change based on funding levels 50% BTE Base engine Final Cd confirmed Mild hybrid demo in Mule vehicle 55% BTE demo on dyno Demo vehicle & trailer mated Complete vehicle testing 2022¦ 2018 2019 2020 2021 Cummins 7

Technical Approach

cummins Peterbilt

- Reduce Work/Mile on test route
 - Vehicle aerodynamics & tire improvements
 - Reduce losses in engine and accessories
 - Enable engine-off-coasting (EOC) to reduce motoring losses
 - Electrify accessories for EOC
 - Enable 48V hybridization to minimize brake losses
- Enable high Engine + WHR efficiency
 - Maximize efficiency on test route
 - Advanced Cycle Efficiency Manager (ACEM) to favor high load engine operation
- Maximize freight capacity via weight reduced powertrain/truck/trailer

Accomplishment- Demo Powertrain

Demo Powertrain delivered and installed in Demo chassis

Successful Integration of the following sub-systems:

 48V mild hybrid with Electrification Thermal Management, M/G, Power Electronics, and DC/DC

 Transmission integral WHR turbine expander and gearbox

 Cooling module integration of WHR Condenser with 48V fans and topping radiator

- Advanced Cycle Efficiency Manager
- 6x4 Disconnect axle system
- Key activities for success:
 - Mule development
 - Electrical buck used for controls integration
 - Powertrain installation and startup prior to cab set
 - Final integration with cab and startup

Program Schedule

Technical Approach: Path to Target

Technical Approach: Path to Target

- 55% Engine Efficiency
 - Dyno Demonstration Complete
- Goals vs. 2009 Baseline
 - Goal: 56% Aerodynamic Drag Reduction

 - Goal: 3800lb Weight Reduction

 - Goal: 30% Reduced Rolling Resistance
 - 33% Achieved

Freight-Ton Improvement

Technical Approach: Applied Technologies

Active Extenders Aerodynamic Body 6x4/6x2 Disconnect Tandems Forward-Looking Yaw Sensor MMC Brake Drums Cameras/Displays Chassis Height Control 48v ePower Steer Lightweight Chassis Low Crr Tires High Efficiency 24.5" Aluminum Wheels Engine/Transmission 48v eHVAC Advanced Cycle Efficiency Manager Mild Hybrid Driveline

Technical Progress: Chassis and Powertrain Systems

48v ePower Steer

- Reduced Engine Parasitics
- Control During Engine-Off Coast
 - Functional Prototype In Operation
 - Final Software Available End of May '22

Chassis Fairings RMC (8)

- Improved Aerodynamic Closeouts
- Lightweight Construction
 - Completed March '22
 - Final Installation Expected April '22

48v ePower Steer

Technical Accomplishments: Chassis Systems

Cooling Module and 48v Fansmille

- Waste Heat Condenser
- Radiator and HVAC Condenser
 - Installed and Operational March '22

Technical Accomplishment: Lightweight/Aerodynamic Trailer

Great Dane

Trailer

- Solar Panels Integrated
- Light Weight Construction
 - 1500lb Weight Reduction
 - 500lb Overweight
- Aerodynamics
 - Modified Commercial Tail
 - Previous: Trailer Sail Plates
 - Maturity Not Yet Ready
- Delivered Feb '22

Trailer Solar Panels

Technical Progress: Active Aerodynamics

Dynamic Sleeper Extender

Control Surface

- Pneumatically Controlled Surface (IMI NORGREN
- Input from Roof-Mounted Yaw Sensor
- High Yaw Drag Mitigation (Trailer Gap)
 - Installed and Validated March '22

Technical Accomplishments: Cab

- - Facilitates Aerodynamic Layout
 - Lightweight Design
 - Cab set Dec '21
- Vehicle Completed Technologies
 - Interior Trim

- Driver Seat
- Wiper System Valeo
- Roof and Outer Body Panels

Windshield and Side Glass PILKINGTON

48V HVAC Bergstrom

Camera System

Cab Interior

2022 Vehicle Schedule Summary

3Q-4Q21

Cab Trim

Chassis Trim

4Q21-1Q22

Cab Set/Troubleshoot

1Q-2Q22

Complete Outer Body
Demonstration Testing

Collaboration: Walmart Application

Data Collection

- Road Grade
- Max Flevation
- Major vs. Local Roads
- Duty Cycle
 - Long & Short Term
 - % Time at Speed, Load
- Aftertreatment
 - Regeneration
 - Maximum Soot
 - DPF Out Temp/Parameters

NREL Data Collection and Analysis (2017)

Location	Trucks	OEM	Engine	Total Mileage
Loveland, CO	8	Peterbilt 579	Cummins ISX15	40,895
Sanger, TX	24	Peterbilt 579	Cummins ISX15	131,605
Grove City, CO	17	Brand X	Brand Y	101,238
	7	Brand X	Cummins ISX15	
Total	56			273,738

Program Summary

- Powertrain
 - Powertrain development in mule vehicle completed and system installed in Demo
 - Cummins has achieved the <u>engine 55% BTE objective</u>
- Vehicle
 - Aerodynamic System, Weight Reduction, Tire CRR Ahead of Target
 - Demonstration Tractor and Trailer Initial Build Completed
 - Final Troubleshooting and Calibration to be Completed in Q2 2022
 - Final Demonstration Testing will begin in July 2022
- Cummins and Peterbilt will exceed the 125% Freight Efficiency objective

Proposed Future Research

- Demonstrate >125% FTE improvement
 - Freight Efficiency Demonstrator is built
 - Complete on-road testing and confirm Freight Efficiency objective in Q3
- Testing planned beyond
 - Use local Texas Route developed by NREL from Walmart duty cycle data to demonstrate technology applicability
 - Test SuperTruck II Demo performance vs. current production baseline vehicle
- Complete Final Report
- The project will complete this fiscal year, with no follow-on funding/work expected

THANK YOU!

QUESTIONS