2022 Annual Merit Review
Cummins/Peterbilt SuperTruck II

Jon Dickson– Principal Investigator, Cummins Inc.
David Mielke– Peterbilt Motors Company
23 June 2022

Project ID:ACE102

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
- Begin: 10/1/2016
- End: 9/30/2022
- 92% complete

Barriers
- Engine Efficiency ≥ 55% BTE
- Freight Efficiency ≥ 100% FTE
- Cost effective solutions

Budget
- Total Project: $40M
- $20M DoE + $20M Partners
- Total Spent: $39M
 - $19.5 = Partners
 - $19.5 = DoE

Partners
- Cummins – Powertrain
- Eaton - Transmission
- Peterbilt - Vehicle
- Bridgestone – Tires
- Walmart – Customer counsel
Demonstrate a minimum of 55% BTE at a 65 mph cruise, on an engine dynamometer test stand
 ▪ Same engine systems also demonstrated in vehicle, operating on real world drive cycles

Achieve a minimum of 125% Freight Ton Efficiency (FTE).
 ▪ FTE = MPG*Tons of Freight

Track, promote and report on cost effective solutions
 ▪ Prioritize solutions that have ~3-year payback period
 ▪ Utilize customer counsel for understanding payback variables
Relevance: Energy Consumption

- Approximately 20% of U.S. transportation petroleum goes to the production of heavy truck fuel. Proposed improvements would save more than 400 million barrels of oil per year.*
 - Reduce imports and improve energy security
 - Reduce the cost of moving goods
- Heavy Truck GHG emissions account for a CO2 equivalent 420.7 MMT per year (35th edition of the Transportation Energy Data Book).
 - Improve air quality
 - Protect the public health and environment

Milestones by Quarter

<table>
<thead>
<tr>
<th>FY 2021</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Freight Efficiency Demonstration Engine Build</td>
<td>Ready the engine for final calibration</td>
</tr>
<tr>
<td>Begin Freight Efficiency Demo Chassis Build</td>
<td>Begin assembly and population of the frame system</td>
</tr>
<tr>
<td>Complete Freight Efficiency Demo Engine Calibration</td>
<td>Prepare the engine, WHR system, and 48V mile hybrid system for the demonstration vehicle</td>
</tr>
<tr>
<td>Complete engine installation into FTE Demo chassis</td>
<td>Installation of the engine into the freight efficiency demonstration vehicle</td>
</tr>
</tbody>
</table>
Milestones by Quarter

<table>
<thead>
<tr>
<th>FY 2022</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Freight Efficiency Demo Truck Build</td>
<td>![Green Check] Truck built and ready for calibration</td>
</tr>
<tr>
<td>Complete on road calibration</td>
<td>![Green Check] Adjustments to powertrain and active aero for demo vehicle</td>
</tr>
<tr>
<td>Completion final freight efficiency demonstration</td>
<td>Demo route and performance tests</td>
</tr>
<tr>
<td>Complete final report</td>
<td>Full system final report</td>
</tr>
</tbody>
</table>
Program Level Milestones

All proposed future work is subject to change based on funding levels

- **50% BTE** Base engine
- Final Cd confirmed
- Mild hybrid demo in Mule vehicle
- **55% BTE** demo on dyno
- Demo vehicle & trailer mated
- Complete vehicle testing

2018 2019 2020 2021 2022
Technical Approach

- Reduce Work/Mile on test route
 - Vehicle aerodynamics & tire improvements
 - Reduce losses in engine and accessories
 - Enable engine-off-coasting (EOC) to reduce motoring losses
 - Electrify accessories for EOC
 - Enable 48V hybridization to minimize brake losses
- Enable high Engine + WHR efficiency
 - Maximize efficiency on test route
 - Advanced Cycle Efficiency Manager (ACEM) to favor high load engine operation
- Maximize freight capacity via weight reduced powertrain/truck/trailer
Accomplishment- Demo Powertrain

- Demo Powertrain delivered and installed in Demo chassis
- Successful Integration of the following sub-systems:
 - 48V mild hybrid with Electrification Thermal Management, M/G, Power Electronics, and DC/DC
 - Transmission integral WHR turbine expander and gearbox
 - Cooling module integration of WHR Condenser with 48V fans and topping radiator
 - Advanced Cycle Efficiency Manager
 - 6x4 Disconnect axle system
- Key activities for success:
 - Mule development
 - Electrical buck used for controls integration
 - Powertrain installation and startup prior to cab set
 - Final integration with cab and startup
Program Schedule

2021

1Q 2Q 3Q 4Q

- Complete BIW
- Build/Populate Chassis
- Build Interior Parts
- Exterior Parts Development
- Peterbilt Work Continue

2022

1Q 2Q 3Q 4Q

- Troubleshoot, Calibration
- ePower Steering, Chassis Height Control Validation
- Road Release
- Test Prep, Test
- Demonstrate > 125% FTE
- Trailer
- Hood Set
- Chassis Fairings
Technical Approach: Path to Target

- Aerodynamics
- Transmission/Axle
- Downspeeding
- Lightweighting
- Route Management
- Rolling Resistance
- Engine
- Mild Hybrid/Solar
Technical Approach: Path to Target

• 55% Engine Efficiency
 – Dyno Demonstration Complete ✓!

• Goals vs. 2009 Baseline
 – Goal: 56% Aerodynamic Drag Reduction
 – 63% Achieved +
 – Goal: 3800lb Weight Reduction
 – 4700lb Achieved ✓+
 – Goal: 30% Reduced Rolling Resistance
 – 33% Achieved ✓+
Technical Approach: Applied Technologies

- Active Extenders
- Aerodynamic Body
- Forward-Looking Yaw Sensor
- 6x4/6x2 Disconnect Tandems
- Cameras/Displays
- MMC Brake Drums
- Lightweight Chassis
- Chassis Height Control
- 48v ePower Steer
- Low Crr Tires
- Advanced Cycle Efficiency Manager
- 24.5” Aluminum Wheels
- Mild Hybrid Driveline
- 48v eHVAC
- High Efficiency Engine/Transmission
Technical Progress: Chassis and Powertrain Systems

48v ePower Steer
- Reduced Engine Parasitics
- Control During Engine-Off Coast
 - Functional Prototype In Operation
 - Final Software Available End of May ’22

Chassis Fairings
- Improved Aerodynamic Closeouts
- Lightweight Construction
 - Completed March ‘22
 - Final Installation Expected April ‘22
Technical Accomplishments: Chassis Systems

Cooling Module and 48v Fans

- Waste Heat Condenser
- Radiator and HVAC Condenser
 - Installed and Operational March ‘22
Technical Accomplishment: Lightweight/Aerodynamic Trailer

Trailer

- Solar Panels Integrated
- Light Weight Construction
 - 1500lb Weight Reduction
 - 500lb Overweight
- Aerodynamics
 - Modified Commercial Tail
 - Previous: Trailer Sail Plates
 - Maturity Not Yet Ready
- Delivered Feb ‘22
Technical Progress: Active Aerodynamics

• Dynamic Sleeper Extender
 – Pneumatically Controlled Surface
 – Input from Roof-Mounted Yaw Sensor
 – High Yaw Drag Mitigation (Trailer Gap)
 – Installed and Validated March ‘22
Technical Accomplishments: Cab

• Cab Body in White 🔄 MAGNA
 – Facilitates Aerodynamic Layout
 – Lightweight Design
 – Cab set Dec ‘21

• Vehicle Completed Technologies
 – Interior Trim 🔄 POINT INNOVATION
 – Driver Seat
 – Wiper System 🔄 Valeo
 – Roof and Outer Body Panels 🔄 RMC
 – Windshield and Side Glass 🔄 PILKINGTON
 – 48V HVAC 🔄 Bergstrom

Camera System

Cab Interior
2022 Vehicle Schedule Summary

3Q-4Q21
- Cab Trim

4Q21-1Q22
- Cab Set/Troubleshoot

1Q-2Q22
- Complete Outer Body Demonstration Testing
Collaboration: Walmart Application

Data Collection
- Road Grade
- Max Elevation
- Major vs. Local Roads
- Duty Cycle
 - Long & Short Term
 - % Time at Speed, Load
- Aftertreatment
 - Regeneration
 - Maximum Soot
 - DPF Out Temp/Parameters

NREL Data Collection and Analysis (2017)

<table>
<thead>
<tr>
<th>Location</th>
<th>Trucks</th>
<th>OEM</th>
<th>Engine</th>
<th>Total Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loveland, CO</td>
<td>8</td>
<td>Peterbilt 579</td>
<td>Cummins ISX15</td>
<td>40,895</td>
</tr>
<tr>
<td>Sanger, TX</td>
<td>24</td>
<td>Peterbilt 579</td>
<td>Cummins ISX15</td>
<td>131,605</td>
</tr>
<tr>
<td>Grove City, CO</td>
<td>17</td>
<td>Brand X</td>
<td>Brand Y</td>
<td>101,238</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Brand X</td>
<td>Cummins ISX15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
<td></td>
<td></td>
<td>273,738</td>
</tr>
</tbody>
</table>
Program Summary

- **Powertrain**
 - Powertrain development in mule vehicle completed and system installed in Demo
 - Cummins has achieved the *engine 55% BTE objective*

- **Vehicle**
 - Aerodynamic System, Weight Reduction, Tire CRR Ahead of Target
 - Demonstration Tractor and Trailer Initial Build Completed
 - Final Troubleshooting and Calibration to be Completed in Q2 2022
 - Final Demonstration Testing will begin in July 2022

- Cummins and Peterbilt will exceed the *125% Freight Efficiency objective*
Proposed Future Research

- Demonstrate >125% FTE improvement
 - Freight Efficiency Demonstrator is built
 - Complete on-road testing and confirm Freight Efficiency objective in Q3

- Testing planned beyond
 - Use local Texas Route developed by NREL from Walmart duty cycle data to demonstrate technology applicability
 - Test SuperTruck II Demo performance vs. current production baseline vehicle

- Complete Final Report

- The project will complete this fiscal year, with no follow-on funding/work expected

All proposed future work is subject to change based on funding levels
THANK YOU!

QUESTIONS