

A New Approach for Increasing Efficiency of Agricultural Tractors and Implements

Project ID: ace161

2022 DOE Vehicle Technologies Office Annual Merit Review

P.I. Andrea Vacca Maha Fluid Power Research Center Purdue University https://engineering.purdue.edu/Maha/

June 2022

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Timeline

- Start date: October 2020
- End date: January 2024
- Percent complete (May 2022): 50%

Budget

- Total project funding: \$3,125,773
	- DOE share: \$2.5M
	- Contractor share: \$625,773
- Funding for FY 2021: \$1,051,586 federal (\$ 809,969)
- ederal (\$ 809,969)
Funding for FY 2022: \$1,018,224
State of the art fluid power systems I federal (\$ 825,352)

Partners

- Purdue University *project lead*
- Case New Holland Industrial (CNHi)
- Bosch Rexroth
- National Renewable Energy Laboratory (NREL)

Barriers and Technical Targets

Barriers

- Improving the efficiency of commercial agricultural vehicles can reduce fuel consumption and provide decreased operating costs for American farms.
• Many agricultural vehicles are reliant on fluid-
- power for their work and drive circuits due to their ability to supply high specific power density and tolerate harsh conditions. However, current fluid-
- State of the art fluid power systems have excessive throttling losses.

Technical Targets

- increase (double) the energy efficiency of the overall hydraulic transmission system of tractors and their implements, by reducing throttling loss
- Achieve a payback period < 2 years

• When an agricultural tractor is connected to a high-power demand implement

- (a planter, a bailer, etc.) the energy efficiency of the high-pressure system that powers the implement is as low as 20%!
- A re-design of the hydraulic control system leveraging cutting edge electrohydraulic control technology can increase the above energy efficiency.
- Commercial success a new fluid power technology is ensured by meeting cost requirement, but also allow compatibility across tractors and implements of different brands and technologies. to develop and demonstrate a novel Multi Pressure Rail (MPR) concept for hydraulic

Yalendre and approximate a novel Multi Demonstrate a novel Multi Pressure System that

A re-design of the hydraulic control technology can CONTICE WERE TO CONTROL STATE THIS CONTROL STATE THIS CONTROL WERE THE CONTROL WERE WERE WERE WERE WERE A Bailer, at bailer, etc.) the <u>energy efficiency</u> of the high-power demand implement and powers the implement is <u>as </u>

Objectives

- doubling the energy efficiency of the overall hydraulic transmission system of the tractor and implement
- reducing the energy consumption of the in-tractor fluid power (FP) functions by ≥15%
- \checkmark achieve a payback period < 2 years
- \checkmark preserve compatibility with state-of-the-art machines
- \checkmark demonstrate the technology on a Cash Crop High tractor and a 16-row planter

: focus of project activities in BP1, BP2

Cleaner Energy **Technology**

Reduction of Energy Cost

Relevance 3 Maha Fluid Power

Milestones (SMART Milestones denoted by *) 4 Maha Fluid Poy

Project activities occurs in three domains:

- O1. MPR Configuration. To determine the configuration of the MPR system (optimizing energy efficiency)
- O2. MPR Compatibility. To develop cost-effective methods for MPR machines compatible with traditional technology
- O3. Technology Demonstration. To establish proof-of-concept MPR systems and demonstrate the energy efficiency advantage

Approach 5 Maha Fluid Power

- valve redundancy
- conflict among flow control valves 60
- over-pressurization of supply flow

PURDUE

Technical Accomplishments 6 Maha Fluid Power

Previous work

- Reference vehicles (O3). Selected with inputs from Case New Holland. Instrumented at Purdue for power and efficiency measurements.
- Baseline tests definition (O3). Definition of reference duty cycles (absence of standard to follow). These are indicated with "normal", "low speed" and "high speed". Stationary tests performed in lab conditions.

- against the stationary tests. The model allows for detailed analyses of energy flows and system efficiency
- **MPR design (O1)**. A MPR **All CONDUCT A** Baseline Consumed Power system with 3 pressure rail $\frac{1}{36}$ 80 was identified as best
compromise between energy compromise between energy $\frac{2}{5}$ 60 efficiency and cost. The
simulated power consumption $\frac{30}{8}$
of the MPR system is close to $\frac{5}{2}$ simulated power consumption $\frac{12}{9}$ 40 of the MPR system is close to $\frac{5}{2}$ ₂₀ 50% of the baseline solution
- Stand alone test rig design (O3). Preliminary $\frac{0}{0}$ design of a test rig to be implemented at Purdue to test MPR components and control strategies

Technical Accomplishments 7 Maha Fluid Power

Field tests (O3)

(Purdue Animal Science Research reference vehicles

 $\frac{1}{\sqrt{1 + \frac{1}{\sqrt{1 +$ (N/H), three engine speeds (1/2/3), two tractor remote circuits (PFC/TF)

Efficiency of hydraulic system downstream the pump (PFC)

- - \checkmark additional model validation
	- \checkmark to characterize the power flow within the hydraulic system and identify the main source of power loss

Technical Accomplishments

Load Torque

PURDUE

Implement Hydraulic Functions

-
- to be connected to each function and the instantaneous pressure at each rail
- on the actuator to meet the velocity commands

Technical Accomplishments
9 Maha Fluid Power

Technical Accomplishments 10 Maha Fluid Power

Model validation (O1)

- Fechnical Accomplishments

Model validation (01)

 The simulation model was validated from tests performed on the tractor, as stand

alone (tests on hydraulic remotes), as well as on tests on the complete tractor-

 The alone (tests on hydraulic remotes), as well as on tests on the complete tractorplanter system
- Fechnical Accomplishments

Model validation (01)

 The simulation model was validated from tests performed on the tractor, as stand

alone (tests on hydraulic remotes), as well as on tests on the complete tractor-

 The 95% accuracy) in both steady state as well as dynamic conditions (such as pump transients) Fechnical Accomplishments

Model validation (01)

• The simulation model was validated from tests performed on the tractor, as stand

alone (tests on hydraulic remotes), as well as on tests on the complete tractor-

• The
- the energy efficiency and control design on the MPR system

Flow on hydraulic remote during planter operation

PURDUE

Technical Accomplishments 11 Maha Fluid Power

MPR predicted performance (O1)

- Drive cycles collected from experiments were
input to the simulation model for testing the MPR
performance, considering all hydraulic functions
Despite the high dynamic requirements of the performance, considering all hydraulic functions $\frac{a}{5}$ $\frac{a}{50}$ 50
- downforce cylinder in the planter, the proposed controller achieves good command tracking, replicating the same dynamic performance of the commercial baseline solution • Drive cycles collected from experiments were
input to the simulation model for testing the MPR
performance, considering all hydraulic functions
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1$
- combinations of connections with pressure rails) and varies the rail pressure to minimize the power loss

function (bulk motor) in realistic drive cycle conditions

Technical Accomplishments 12 Maha Fluid Power

MPR predicted performance (O1)

Fechnical Accomplishments

MPR predicted performance (01)

• Different architectures for the MPR diversions of the instantaneous rail pressure, as well as a method for separating the downforce cylinder system.

MPR sixely of the instantaneous rail pressure, as well as a method for separating the downforce cylinder system.

Instantaneous power consumptions during a drive cycle

up to 54.40% reduction in power consumption up to 119.32% relative increase in system efficiency GNG1

Technical Accomplishments 13 Maha Fluid Power

MPR stand alone test rig (O3)

- novel Bosch Rexroth technology specifically designed for MPR
- Fechnical Accomplishments

MPR stand alone test rig (03)

 A standalone flexible test rig was implemented at Purdue with

 Experiments needed to validate dynamic performance of the

 Proposed control scheme particularly proposed control scheme particularly during mode switching logic

Hydraulic schematic and picture of the standalone test rig for MPR system implemented at the Maha Fluid Power Research Center of Purdue

Technical Accomplishments 14 Maha Fluid Power

MPR stand alone test rig (O3)

- the switch of one function between different rails
- **Technical Accomplishments**
 MPR stand alone test rig (O3)

 Controller optimized to achieve best behavior during

the switch of one function between different rails

 The two-pump architecture for the MPR was found as **Fechnical Accomplishments**
 MPR stand alone test rig (O3)

• Controller optimized to achieve best behavior during

the switch of one function between different rails

• The two-pump architecture for the MPR was found as more capable to handle transients, thus selected for the tractor implementation

LP

Technical Accomplishments 15 Maha Fluid Power

MPR stand alone test rig (O3)

- the switch of one function between different rails
- **Technical Accomplishments**
 MPR stand alone test rig (O3)

 Controller optimized to achieve best behavior during

the switch of one function between different rails

 The two-pump architecture for the MPR was found as **Fechnical Accomplishments**
 MPR stand alone test rig (O3)

• Controller optimized to achieve best behavior during

the switch of one function between different rails

• The two-pump architecture for the MPR was found as more capable to handle transients, thus selected for the tractor implementation **Fechnical Accomplishments**
 MPR stand alone test rig (03)

• Controller optimized to achieve best behavior during

the switch of one function between different rails

• The two-pump architecture for the MPR was found as
- savings of MPR over state of the art hydraulic flow control technology

Technical Accomplishments 16 Maha Fluid Power

MPR compatibility (O2)

- non-MPR tractor with a MPR implement (and viceversa)
- **Fechnical Accomplishments**
 MPR compatibility (02)

 The project analyzed possible scenarios for connecting a

 Minor modifications on the hydraulic schematic of the

MPR systems are required on both the MPR tractor a **Fechnical Accomplishments**
 MPR compatibility (O2)

• The project analyzed possible scenarios for connecting a

• Minor modifications on the hydraulic schematic of the

MPR systems are required on both the MPR tractor a MPR systems are required on both the MPR tractor and MPR implement to allow compatibility **Fechnical Accomplishments**
 MPR compatibility (O2)

• The project analyzed possible scenarios for connecting a

non-MPR tractor with a MPR implement (and viceversa)

• Minor modifications on the hydraulic schematic of
- controller, and not on hardware modification

 p_{MP} p_{HP} p_{LS} p_{LP}

Example of connection of MPR tractor with non-MPR implement Design of the compatible remote valve based on traditional technology

Expected view of the compatible MPR tractor remote connections (right) compared to current technology (left)

Collaboration 17 Maha Fluid Power

Proposed Future Research 18 Maha Fluid Power

Any proposed future work is subject to change based on funding levels

Summary 20 Maha Fluid Power

Accomplishments

- many

 Accomplishments

 Baseline field tests designed by the Team were performed

on the tractor-implement system fully instrumented in FY21

 Field tests and standard lone tests allowed validating the

 Field tests a on the tractor-implement system fully instrumented in FY21
-
- many

 Complishments

 Baseline field tests designed by the Team were performed

on the tractor-implement system fully instrumented in FY21

 Stand alone test rig for testing MPR technology completed

 Field tests and many

• **Accomplishments**

• Baseline field tests designed by the Team were performed

on the tractor-implement system fully instrumented in FY21

• Stand alone test rig for testing MPR technology completed

• Field tests simulation model used for MPR technology development
- found to be about 20% in most drive cycles
- modelland and the state of the fractor-implement system fully instrumented in FY21

 Stand alone test rig for testing MPR technology completed

 Field test modelland architecture first formulated in FY21

Faseline field tests designed by the Team were performed

on the tractor-implement system fully instrumented in FY21

• Stand alone test rig for testing MPR technology compl where improved to enable optimal energy efficiency while ensuring proper dynamic performance
Different MPR architectures studied, all meeting the GNG1 Successful project management through weekly and examples are all the Team were performed

• Baseline field tests designed by the Team were performed

on the tractor-implement system fully instrumented in FY21

• Stand alone test rig for testing MPR technology completed
 Experiments

• Baseline field tests designed by the Team were performed

• Stand alone test rig for testing MPR technology completed

• Stand alone test rig for testing MPR technology completed

• Field tests and stand-a
- goal, the most promising one double energy efficiency
-

Impact towards DOE-VTO Objectives

An opportunity for US industry to transform agricultural equipment technology through a high-efficient method that offers the advantage of being compatible with existing state-of-the-art technology

Technical Highlights

- **SUCCERT MANAGE AND FUNDER CONSIDER**

SUCCESSFUL PROPOSED TO THE PROPOSED ON THE PROPOSED OF THE PROPOSED OF THE PROPOSED CONSIDERATION CONSIDERATION CONSIDERATION CONSIDERATION CONSIDER SUCCESSFUL PROPOSED (SUCCESSFUL PRO **Maha Fluid Power PURDUE**
 Technical Highlights

The proposed MPR technology is confirmed to

doubles the energy efficiency of the overall

tractor-implement hydraulic system

Definition of drive cycles for testing the f doubles the energy efficiency of the overall tractor-implement hydraulic system **Example 19 The Finance of Definition of drive controls for the fluid proposed MPR technology is confirmed to
doubles the energy efficiency of the overall
tractor-implement hydraulic system
• Definition of drive cycles for Experiment State of the technology is confirmed to the technology is confirmed to doubles the energy efficiency of the overall

The proposed MPR technology is confirmed to doubles the energy efficiency of the overall

tra** ²⁰
 Experiments Set for Figure 10
 Experiments Set for Figure 10
 Experiments of Figure 10
 **Experiment in the energy efficiency of the overall

tractor-implement hydraulic system

• Definition of drive cycles for**
	- power system of tractor-implements
	- purposely design stand alone stationary test rig
	- technology on an actual agricultural system

monthly meetings. Expected milestones delivered on time.

Collaborations

Close cooperation between an OEM, a tier 1 component supplier, a national lab and a University lab creates a unique platform for technology innovation

Technical Back-Up

Technical Back-Up 22 Maha Fluid Power

PURDUE

Tractor instrumentation (O3)

Technical Back-Up 23 Maha Fluid Power

Planter instrumentation and data acquisition system (O3)

Technical Back-Up 24 Maha Fluid Power

- Example 24 Minimideal Back-Up
Field test system power distribution (O3)
• Flow data are normalized against respective max
measurement $(p/p_{max}, Q/Q_{max})$ for generality and to meet • Flow data are normalized against respective max Flow data are normalized against respective max

measurement $(p/p_{max}, Q/Q_{max})$ for generality and to meet

confidentiality requirements

Pressure breakdown reveals noor energy efficiency confidentiality requirements
	- Pressure breakdown reveals poor energy efficiency performance of the standard load sensing system technology $_{0.00}$
	- Lower pressure users experience more losses

Power consumed depending on the test condition

Average flow, pressure and power values during one of the field tests with the baseline technology (load sensing)

Planter Power Distribution

Technical Back-Up 25 Maha Fluid Power

Test stand data acquisition system (O3)

