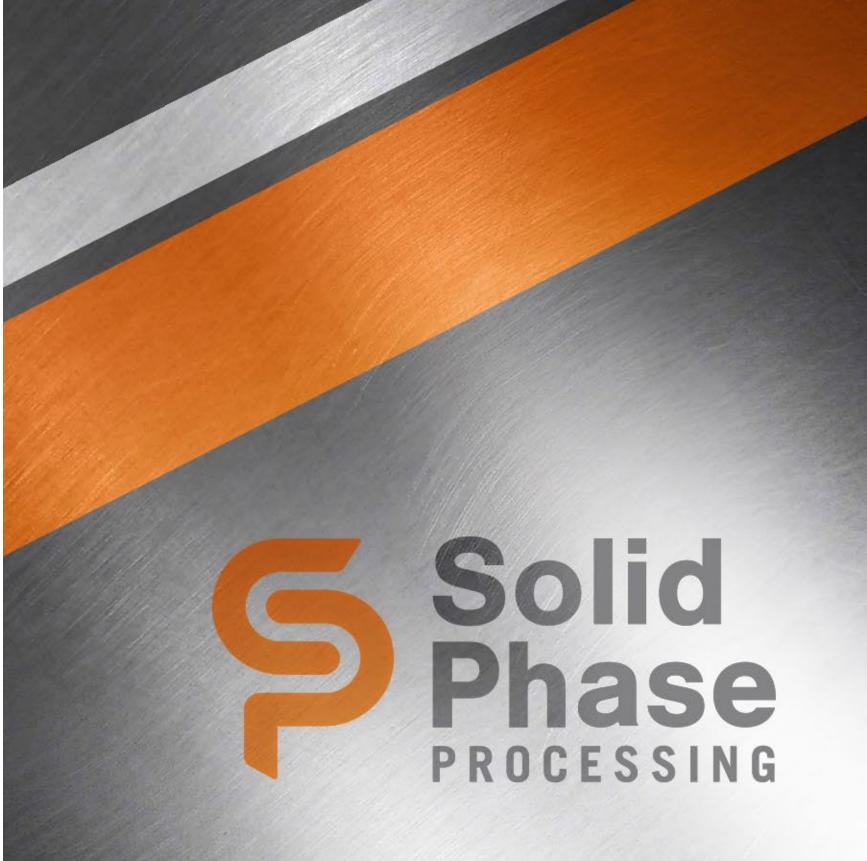


Shear Assisted Processing and Extrusion (ShAPE) of Lightweight Alloys for Automotive Components


Project ID:	MAT149
Presenter:	Scott Whalen ¹
PI:	Scott Whalen ¹
Team:	Magna International, Inc.
	Md. Reza-E-Rabby ¹
	Scott Taysom ¹

¹Pacific Northwest National Laboratory

BATTELLE PNNL-SA-172544

PNNL is operated by Battelle for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: Nov. 2018
- Sept. 2022 • End date:
- % complete: 91% as of June 2022

Barriers

- Magnesium (Mg)
 - Low-cost feedstock
 - Improved alloys for energy absorption
- Aluminum (AI)
 - Improved ductility and fatigue
 - Recycling of scrap directly into product

Partners

- Magna International, Inc. (Magna)
 - Stronach Center for Innovation
 - Cosma Engineering
 - Magna R&D
- Pacific Northwest National Laboratory (PNNL)

Budget

- Total project funding
 - \$2,000K
- \$1,000K DOE share
 - \$878K Costs incurred through Apr. 2022
- \$1,000K Industry share
 - \$1,576K Costs incurred through Apr. 2022

Relevance

Challenge


- Reduce carbon footprint and manufacturing cost (AI)
- Increase energy absorption (Mg)

Objectives

- Evaluate potential for ShAPE to improve energy absorption of non-RE Mg alloy ZK60
- Direct recycling of 100% secondary AI scrap into extrusions meeting industry property requirements
- Manufacture non-circular multi-cell extrusion profiles by ShAPE using porthole dies

Benefits

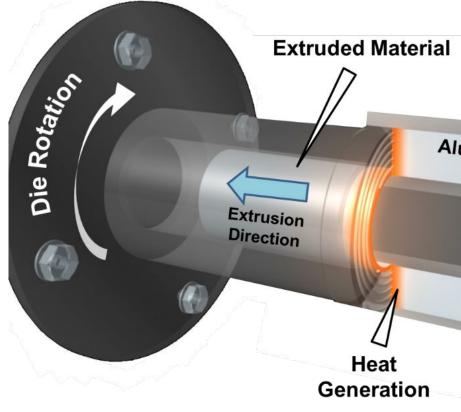
- Reduced vehicle weight, replacing aluminum extrusions with Mg extrusions
- Reduced cost, energy, and CO₂ footprint using 100% secondary AI scrap

Milestones

Task Description	FY 2019		FY 2020			FY 2021					
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: Extrude AI 6063 tube at industry relevant rate using wrought billets										with 1 mr n speed o	
Task 2: Extrude 100% secondary scrap AI 6063 with equivalent T5 and T6 properties		ruded 12 using bri									
Task 3: Extrude AI 6063 round profile using porthole die			uded 12 r using bri			0	2 mm				
Task 4: : Extrude non-circular profile from ZK60 and 100% secondary Al 6063 scrap					•	•		•		n 2 mm w iquette ai	
Task 5: Multi-cell non-circular profilefrom 100% secondary Al 6063 scrap										e with 2 r using cas	
Task 6: Characterize material properties and microstructure									•	cast and trength a	

Lightweight Materials Consortium

What is ShAPE?


- Linear and rotational shear are combined to impart extreme deformation into the material
- Scalable method of extruding circular, non-circular, and multi-cell structural profiles

Benefit for Mg

- Grain refinement and texture alignment have potential to reduce asymmetry in tensile/compressive strength ratio
- Improved energy absorption

Benefit for Al

- ShAPE processing enables use of 100% secondary Al scrap
- <u>Re-purpose Al scrap without adding</u> primary Al (lower cost, energy savings, reduced CO₂ footprint in manufacturing)

on into the material tural profiles

Aluminum / Magnesium Scrap / Billet

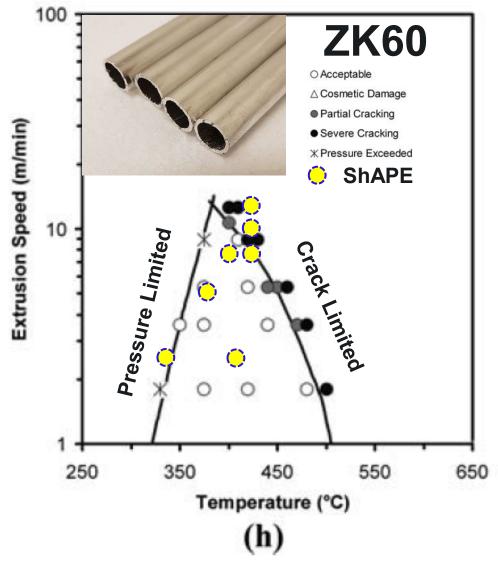
Mandrel

Approach

ShAPE of AI 6063 – Secondary Scrap

- Manufacture feedstock using 100% secondary AI
 - Cast Billet
 - Chipped Briquette
- Maximize ram speed, evaluate T5 & T6 properties
 - DOM (drawn over mandrel) die configuration
 - Circular profile
 - Porthole die
 - Circular
 - Non-circular
 - Non-circular multi-cell

ShAPE of ZK60 – Energy Absorption


- Feedstock typical cast billet
- Evaluate energy profile

Technical Accomplishments: Extrusion and toughness of Mg ZK60

D. Atwell, M. Barnett, "Extrusion Limits of Magnesium Alloys," Metallurgical and Materials Transactions A, 38A, 3032-3041.

Speed (m/min)	Toughness (MPa)
7.4	18
4.9	22
2.4	16
1.2	2

Off-axis basal plane alignment discovered at slower speeds, 0.15 m/min* was not observed at higher extrusion rates.

Limits potential for commercial application

*Joshi, et. Al., "The Processing-Structure-Properties Relationship for Mg Alloys during Shear Assisted Indirect Extrusion," TMS 2016.

Technical Accomplishments:

Briquettes from 100% Secondary AI 6063 Chips

Compacted briquette from 100% secondary AI 6063 scrap chips developed by Magna

* T5/T6 Min. ASTM B221M-13. Table 2 * T5/T6 Typ, ASM Handbook, Vol 2b, Table 4-6

AI 6063	Yield Stress (MPa)
ASTM Min (T5)	110
ASM Typ (T5)	145
ShAPE (T5)	172

ASTM Min (T6)	170	205	8
ASM Typ (T6)	214	241	12
ShAPE (T6)	204	231	17

- Briquettes from 100% secondary scrap AI are a ٠ *low-cost, low CO₂ footprint feedstock*
- 0% primary AI addition results in 92% CO₂ savings

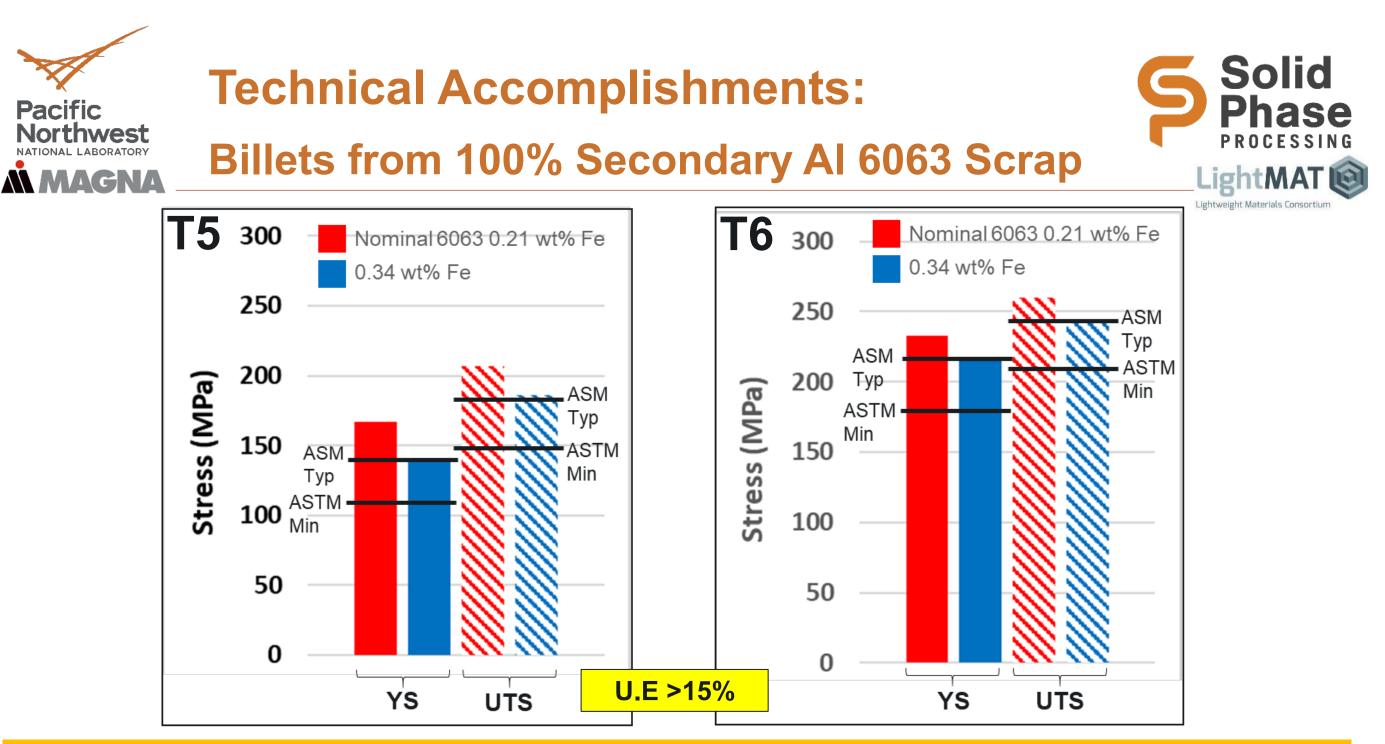
Ultimate Stress (MPa)	Elongation at Break (%)
150	8
186	12
210	22

Technical Accomplishments:

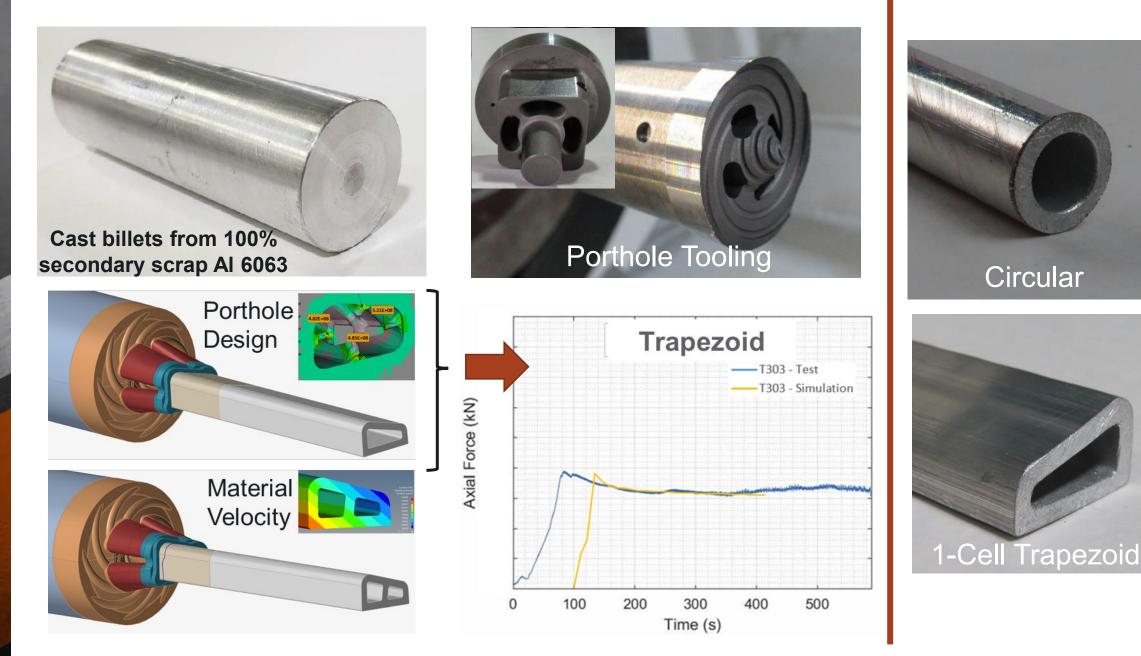
Cast Billet from 100% Secondary AI 6063 Scrap

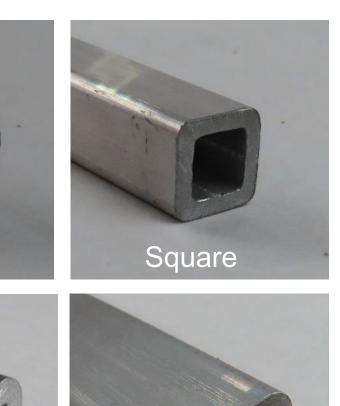
Cast billets from 100% secondary scrap AI 6063

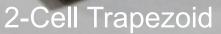
12 mm OD2 mm wall4.2 meters/min

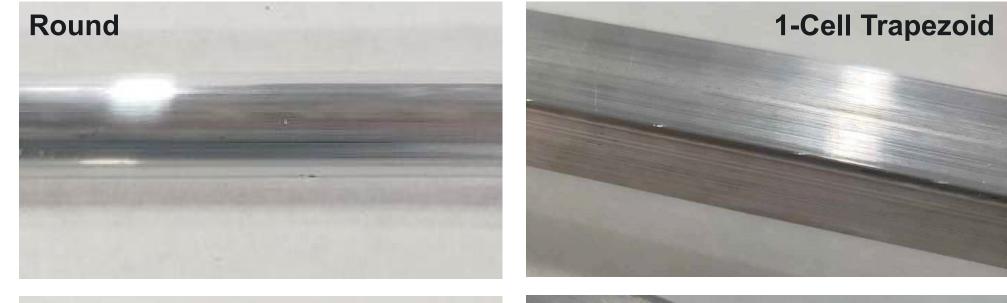


Spray Rings


9

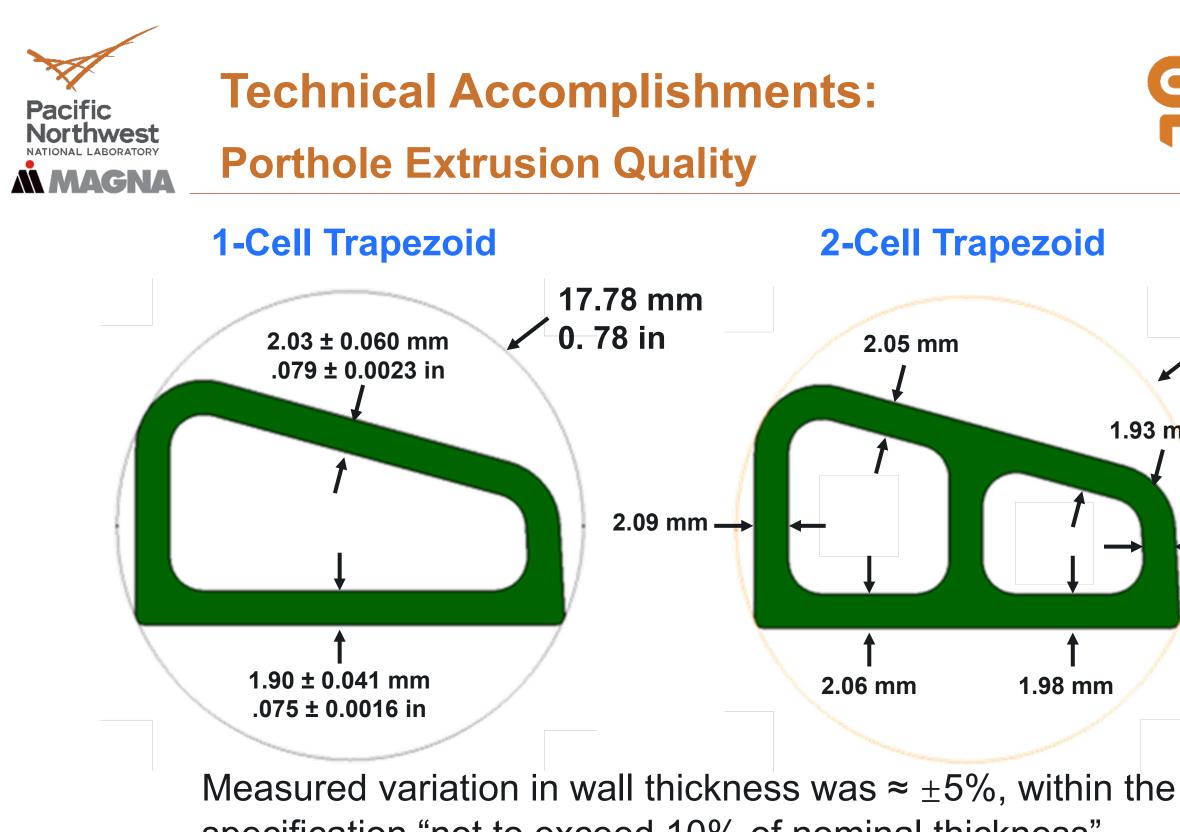

- Billet feedstock comprised of 100% secondary AI scrap are low-cost and have a reduced CO₂ footprint
- 0% primary AI addition results in 86% CO₂ savings
- Increased Fe content resulted in lowered tensile properties, but within ASM_{tvp} and ATM_{min} standards


Technical Accomplishments: Porthole Die Development



Technical Accomplishments:

Porthole Extrusion Quality



Surface quality meets or exceeds application requirements

specification "not to exceed 10% of nominal thickness"

17.78 mm 🖌 0. 78 in

Response to Previous Year

Reviewers' Comments

Response
Magna performed extensive modelin design and ShAPE extrusion process
Significant resources were needed to square, trapezoidal, and multi-cell pr dies. Multi-cell is the key to enabling
Magna agrees with the importance of effect of scrap feedstock chemistry. The future work focusing on Al 6061, 6
Preliminary dimensions and surface and will require further investigation. equivalent to conventional extrusion
Manga has engaged the secondary s and industrial machine manufactures scale ShAPE extrusion machines

ng of porthole die ss simulation

to demonstrate round, profiles with porthole g commercialization

of understanding the This will be addressed 6063, and 6082.

e quality are promising . Appears to be

scrap AI supply chain to build commercial

Collaboration

Pacific Northwest National Laboratory

- Scott Whalen
- Md. Reza-E-Rabby
- Scott Taysom
- Nicole Overman

PM/PI

Process Tooling & Mechatronics Characterization

- team across 4 site locations
- collaboration

Magna International

- Tim Skszek
- Aldo Van Gelder
- Massimo DiCiano
- Thomas Richter
- Michael Miranda
- Cangji Shi

PM PI Process Simulation Tooling Commercialization

- Magna are in-process for **Commercial Use License**

• Fully integrated multi-disciplinary

Frequent virtual meetings and

Research Use License has been acquired by Magna for ShAPE IP

Negotiations between PNNL and

- All objectives and milestones have been achieved
- No challenges or barriers remain for LightMAT scope
- Magna is now pursuing commercialization
 - Expand alloys to 6061 and 6082
 - Understand sensitivity of 100% scrap AI feedstock for Mg and Fe content
 - Optimize cleaning and compaction process for manufacturing briquettes
 - Investigate scaling of ShAPE process

Proposed Future Research

• FY22 (Q3-Q4)

- Continue to build mechanical property statistics for porthole extrusion of 100% secondary AI 6063 scrap feedstock
- Mature ShAPE process parameters for port hole extrusion of non-circular multi-cell profiles
- Prepare final report

Any proposed future work is subject to change based on funding levels

Summary

- Determined that ShAPE of Mg ZK60 at production extrusion speeds does not offer improved toughness
- Extruded briquettes and cast billets made from 100% secondary AI 6063 scrap
 - T5 and T6 properties exceed ASTM standard and ASM typical values
 - Reduces feedstock cost and in-turn cost of extruded components
 - Eliminates need for adding primary AI during recycling
 - Saves 86-92% CO₂ compared to conventional extrusion of standard billets

Demonstrated porthole extrusion of ZK60 and 100% secondary AI 6063 scrap

- ZK60 and 100% secondary AI scrap Round
- ZK60 and 100% secondary AI scrap Square
- 100% secondary AI scrap Trapezoid
- Multi-Cell 100% secondary AI scrap

• Magna and PNNL are negotiating commercial use license for ShAPE IP

