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Overview

Barriers
* Architecture complexity. For off-

Timeline road vehicles, there exist both the

* Project Start: Sept. 2020 drivetrain and the work circuit.

« Project end: Dec. 2023 There are complex dynamic

. Percent complete: 50% ipteractions between them in real
time.

* Operator inefficiency. The complex
dynamics of the powertrain and its
response time make operator control

Budget challenging, resulting in lower
« Total project funding: $1,738,118 efficiency and productivity.

— DOE: $1,670,000

—  Cost share: $68,118 Partners

* University of Minnesota
e Texas A&M University
* CNH Industrial

* Funding for BP1: $559,135
* Funding for BP2: $584,738



Relevance

We aim to use connectivity and
automation to reduce energy

consumption and increase =
productivity for off-road vehicles. e
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fashion.



Milestones

Time Description Status

Sept. 2021 Optlmlzatlon problem is forml_JIated (Qost Complete
function and constraint equations available)

Dec. 2021 Vehicle model is developed (Root Mean Square Complete
error <5%)
Communication system is developed

March 2022 (Communication latency < 100 milliseconds Complete
with no missing data)
Solution to the optimization developed

June 2022 (Computation time < 80% of duty cycle; On schedule
Efficiency gain > 20%)

Sept. 2022 HIL testbed is fully integrated On schedule




Approach

Optimization and Control of Off-road Vehicles: The control system will perform co-optimization of
vehicle speed and tool motion, fluid power system and the engine through automation. To formulate the
model-based optimization problem, the target off-road vehicle model will be developed. Efficient
numerical methods will be applied to solve the optimization.

HIL Testbed Development: A HIL testbed will be developed to evaluate energy savings of the control
and co-optimization system. The HIL testbed has an actual engine loaded by a hydrostatic dynamometer
based on real-time simulation of work and drive circuits of the target off-road vehicle.

Evaluation and Testing of Off-road Vehicle Energy Savings with the HIL Testbed: The HIL testbed
will be used to evaluate the fuel economy and emissions benefits of the optimization and control with
laboratory instruments and benchmark with baseline field data. The performance of the optimal control
system will be evaluated at different levels of automation for the selected off-road application.
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Technical |
: NY,
Accomplishments

A full vehicle model for a wheel loader is N g
developed and validated. ' '
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— Steering circuit model
* Model Calibration

— Drivetrain model

~—» Main Valve

— Work circuit converter

— Steering circuit model
* Model Validation

— Less than 5% of RMS error has
been achieved comparing the

model with the field data.

— Fuel consumption discrepancy is
within 2.3%
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Technical Accomplishments:

Vehicl

e model simulation
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Technical Accomplishments: Energy analysis
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Energy analysis reveals that dynamic coupling between
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and opportunity for energy saving.
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Technical Accomplishments: Transport phase

phase of the V-shaped loading cycle
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Technical Accomplishments: Optlmal transport
trajectory
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Optimal result shows a 16% decrease in fuel consumption compared with the human-driven cycle.
27.9% fuel benefit can be achieved with more aggressive steering.



Technical Accomplishments: Digging phase

optimization
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Working Scenario Setting

The bucket move only inside x — z plane
without having motion in y direction.

The bucket tip position and orientation angle is
used to represent the the bucket motion.

Resistance force is calculated at the bucket tip.

The work done by the bucket is mapped into the
main hydraulic pump.

Cost function is fuel consumption.



TeChnical AccompliShments : Resistance Force Validation
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Technical Accomplishments: Optimal digging profile
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Technical Accomplishments: Comparison with human

operation

Imitate bucket trajectory of human driver’s loading

Mimic human driver’s operation with 100% throttle during
bucket loading

operation
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Technical Accomplishments: Communication system

Experimental Setup

Vehicle Communication Overview
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Responses to Previous Year Reviewers’ Comments

*  One challenge with taking off-road vehicle performance and correlating it with a good vehicle model is the soft
soil portion of the analysis.

FEE based resistance force model has been developed. It has been validated with field data. A real-time
adaptive force model has also been developed and an IP has been filed for this model.

» It was not clear to the reviewer how the tool part of the machine will be evaluated in the HIL.

Based on the trajectories of the driveline and the work tool, the load on the engine will be calculated using
the validated system model. This load will be applied in real-time to the engine through the HIL testbed. Fuel
consumption will be measured to evaluate the effect of different trajectories.

o The reviewer asked two questions. Firstly, can the team describe how this optimization will interact with the
machine operator? Secondly, will the controls detect what is desired and dampen, limit, or alter the operator
input somehow or will there be periods of automation that the operator can choose to enable somehow? How this
really gets implemented in an operator and dynamic work environment was not yet clear to the reviewer.

The optimization results can be implemented as driver assistance, partial automation (either drivetrain or
work tool automation), and full automation. Effect of different levels of automation will be evaluated with the HIL
testbed.



Collaboration and Coordination

« University of Minnesota: Lead the overall project. Develop and validate full vehicle model for
off-road vehicles including the fluid power system, build the HIL testbed, implement the co-
optimization control and conduct energy savings evaluation using the HIL testbed.

« Texas A&M University: Develop and validate the reduced order model, construct the worksite
simulation, develop the co-optimization of vehicle dynamics and powertrain operation.

* CNH Industrial: define the representative off-road vehicle applications, coordinate actual vehicle
testing at CNH, validate the off-road vehicle model and provide industrial feedback on the testing
and optimization results.

To facilitate project coordination, we have weekly meetings for each university, bi-weekly meetings
for two universities, and monthly meetings for the whole team.

UNIVERSITY OF MINNESOTA
Driven to Discover: AlM ‘ m

INDUSTRIAL




Remaining Challenges and Barriers

*  Next step is to demonstrate the optimization and control on the HIL
testbed.

» The validated system model will be integrated with the control system
and the HIL testbed to evaluate the fuel benefits of the optimization.

»  Currently we are in the process of installing a CNH 521 wheel loader
engine for the HIL testbed.
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Proposed Future Research

Develop solution to the optimization including
both analytical approach and numerical approach
(Computation time < 80% of duty cycle;
Efficiency gain > 20%) (6/2022)

Integrate the system model, optimization and

control, worksite simulation, and communication
with the HIL testbed (9/2022)

HIL testbed 1s well calibrated and real-time
operational (Sampling time of 0.2 seconds;
Discrepancy between measurements of HIL and
actual wheel loader < 5%) (12/2022)

HIL testbed baseline 1s documented (3/2023)

Partial automation evaluation (6/2023)

Full automation evaluation (9/2023)

Task 1 (Optimization and Control)
Task 14

Task 1.1 Task 1.2 Task 1.3
(Dynamics (Model Order (Optimization (Solving
Modeling) Reductlon) Formulation) Optlmlzatlon)

Task 2 (HIL Testbed Development)

Task 2.1 Task 2.2 Task 2.3 Task 2.4
(Worksite (Communication (HIL (Calibration |—
Simulation) System) Integratlon) and Testing)

&
‘

Task 3 (Evaluatlon and Testing with the HIL Testbed)

Task 3.1
(Baseline

Testing)

Task 3.2 Task 3.3
(Partial (Full
Automation) Automation)

Task 3.4
(Results

Analysis)

r——————————————————————————————————————————————————————————>

Any proposed future work is subject to change based on
funding levels.



Summary

* The objective of this project 1s to save energy and improve productivity
for off-road vehicles through connectivity and automation.

* A wheel loader 1s selected as a representative example and will be
evaluated using a hardware-in-the-loop testbed.

* A dynamic model for the wheel loader has been developed and
validated with field data. Energy analysis based on the model reveals
opportunities for fuel saving.

* Optimization has been formulated for both transport phase and digging
phase. Significant energy benefits (more than 20%) have been obtained.

* Currently focusing on HIL testbed integration. Future work 1s to use the
HIL testbed to evaluate the energy benefits of different levels of
automation.



Technical Back-Up Slides



HIL Testbed Architecture
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