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Overview

Timeline Barriers
Start Jan 1, 2020 o “Understanding and robust modeling tools for rapidly
screening proposed designs based on sound metrics are
lacking” — U.S. DRIVE roadmaps
o “More robust ignition systems for lean and EGR, as well as

End June 30, 2023
Budget period 2 July 1, 2021-June 30, 2022

ComEie e CF Ul e 2 boosted conditions that reduce combustion variability are
Budget needed” — U.S. DRIVE roadmaps
B 51093781 »While electrification is taking over _the I__D/I\/I_D (maybe even HD)
on-road markets, pre-chamber ignition is still an enabling
FUlelE $650,000 technology for future ICEs for off-road, rail, and possibly even
Argonne (FFRDC) $225,000 marine and (perhaps) on-road engines.
Cost share (20%) $218,781 »Pre-chamber ignition is also being evaluated as an enabling
Sl parie 2 $347.789 technologies for the use of H2 as an engine fuel in these
sectors.
Partners

o o This work overcomes these barriers by developing accurate
o Purdue U”'V?rs'ty and efficient models for turbulent flame propagation initiated
o Argonne National Laboratory by a pre-chamber turbulent jet ignition source. 2



Relevance

Project Goal Significantly improve the predictive accuracy and efficiency of turbulent
combustion sub-models for the simulations of premixed flame propagation
Initiated by pre-chamber turbulent jet ignition.

o Objective 1: Acquire statistical

properties of high-Karlovitz turbulent 'y DNS Informed statistical

p_remixc_ed flames from dire_ct numeric_al - : | characteristics and scaling of high |l Model refi

simulations (DNS) to provide theoretical 2 Karlovitz number turbulent 7‘ odel relinement.
basis for pre-chamber turbulent jet ’ premixed flames | ‘ \
ignition (TJI) model;

Engineering
models for
turbulent jet
ignition

o Objective 2: Develop high-fidelity large-
eddy simulation (LES) model for TJI to
yield consistency with the acquired
statistical properties from DNS;

o Objective 3: Develop engineering 7 ‘ : s T
Reynolds-averaged Navier-Stokes e
(RANS) model for TJI through machine RW" e
learning by using data from high-fidelity
LES.

Model deployment

A hierarchically informed engineering model for turbulent flame propagation



Milestones

budget period 2, July 1, 2021-June 30, 2022

Milestone Type Description Status
.y : The mixing frequency model informed by the power-law scaling observed
ﬁ]i;:((i)r;stefrrlgrlut:r?gn?nc;f dt:Ieis Technical |in DNS has been incorporated in actual LES and a posteriori testing of 95%
g'req y Q1 the model has been completed to further validate the accuracy of the completed
complete
model.
[?evglopment of high- Technical | The development of LES model for combustion in TJI systems has been
fidelity LES model for TJI Completed
. Q2 completed.
IS complete
V.alldgtlor? of the developed : The model components based on the power-law scaling have been
high-fidelity LES model for | Technical |. . : 80%
: : integrated together and the model validation in the Purdue model TJI rig
TJI in Purdue model TJlrig | Q3-Q4 . completed
: has been finished.
Is complete
A targeted high-fidelity predictive LES combustion model for TJI has been
achieved to provide a tool for the reduced-order model development
A high-fidelity LES afterward. The model has been validated against the Purdue model TJI
combustion model for TJI | Go/No Go | rig to reproduce the measured characteristics of the TJI rig including but | On schedule
has been developed and not limited to the pressure rising history in pre-chamber and main
validated chamber and the ignition timing. An overall error of the model prediction
relative to the measurements within 30% is targeted.
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o Three levels of model
descriptions
* Direct Numerical Simulations
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Approach

o Stochastic modeling of turbulent combustion

with LES/PDF

 Detailed chemical kinetics incorporated in
turbulence without modeling requirement

* Machine learning assisted mixing model

O DNS data
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Approach

oMachine learning for turbulent dYA Y, I
reaction rate modeling —_— = —— -
A+B = C+D A:deficent dt Lc lc = A

T4: effect of chemical kinetics
F: effect of turbulence

Arrhenius reaction rate
(laminar chemistry model)

w = k[A] [B] = K % & High-fidelity TJI F _
Wy )\ Wg modeling data True — ¢ / s

- E
x = ATP exp(—ﬁ>

dY, aW,w Y, oY, Machine Learning
dar P N _a A= alW,w
Eddy dissipation model
dYA B Y, B 4k TJI enmg(i)r(;e:ring
— — — Tm —_

dt Tm



Technical Accomplishments and Progress

o Work conducted during Budget Period 2

A posteriori
testing of
machine learning
assisted mixing
model

High-fidelity
model validation
In Purdue model

TJl rig

Machine learning
assisted
combustion
modeling

CH4(RMS)

CONVERGE
CFD benchmark
of Argonne TJI
engine




Technical Accomplishments and Progress

A posteriori testing of machine learning assisted mixing model O DNS data
Traditional model Machine learning model ——b4x64x24

x/D=40 x/D=40 —96x96x48
] ' I 150 128x128x64
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o Machine learning assisted mixing model improve coarse grid results
o Promise of the machine learning mixing model for premixed combustion modeling
o Remaining discrepancy is under-investigation. 9



Technical Accomplishments and Progress

Further model validation in Purdue TJI rig (under more relevant condition)

Prechamber

Spark plug

pressure —
transducer

Prechamber

* OpenFOAM (LES with Smagorinsky turbulence

. o Numerical and model setup

___— Orifice mo del)
j :E“ gl:;;:::u:: » Transported PDF method (stochastic fields)
— * IEM mixing model
1 [ A « Machine learning assisted mixing model
J ol _E * Global chemistry CH4+202=>C02+2H20
» Spark model: energy deposition model
Main chamber g Yo » Pre-chamber simulation (reported here)
transducer

_ : o * Main chamber simulation (in-progress)
(Biswas et al. Applied Thermal Engineering, 2016, 106:925)

 Unstructured grid (1 million cells for pre-chamber,

; pe 1(2— Zope) 1(t—t,)2\ 3.5 million total)
k= exp| —= exp| —=
sp 4n2ﬂ§pkrspk 2 ﬂ.ﬁpk 2 Iszpk b

(Lacaze et al., C&F, 2009, 156:1993)



Technical Accomplishments and Progress

Further model validation in Purdue TJI rig

W/O turbulence
forcing

With turbulence
forcing
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o Turbulence forcing is needed to allow transition from quiescent to turbulence (due to

the limitation of turbulence model and spark model)
o The flame propagation is more plausible after turbulence forcing.
o The pressure growth is reasonably captured with turbulence forcing.

15
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Technical Accomplishments and Progress

Machine learning assisted combustion modeling: a preliminary analysis

LES/PDF pre-chamber simulation Lo SCHY | CHA(RMS)
CH,(RMS) 26 0.025
0 i
4 4
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) O b esss es
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S(CH4) 0.016 st ; 3909 5 .016 0.8
o Laminar chemistry model S(CH,) is very problematic ... : e —— NN
o F varies significantly (eight orders of magnitude e e -
difference) 1
o The variation is mainly near the flame front in a narrow .., . Ly .
region where turbulence-chemistry interaction is strong e %ow ol v




Technical Accomplishments and Progress

Machine learning assisted combustion modelina: a preliminarv analvsis

o Machine learning approach for
modeling F

»Random forest algorithm
»Input features (15 parameters)

»Pre-chamber data for the
preliminary analysis
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o Promising to use machine learning to produce better prediction for
turbulent reaction rate (compared to laminar chemistry model)

o ML error ~ +30%

o Add ~10% computational cost to laminar chemistry model
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Technical Accomplishments and Progress

Benchmark CFD simulations completed for both active (fueled) and
passive (unfueled) PCSI conditions

Jniueledrc Fueledhc o Benchmark RANS simulations performed using
Engi d 1200 .
neme Spes P the commercial solver CONVERGE CFD.
Intake boost pressure bar 1.16 1.04
Exhaust back pressure bar 0.98 0.98 o Good agreement between simulations and
Spark ignition timing  CAD aTDCf 17 175 engine data for fueled PC conditions.
Excess-air ratio (Ai,eqxe) . 1.50 1.85 1.91 2.24 . L
mel ratio of PC/ntake % : : 2> 21 o8 - o PC combustion rate under-prediction was
Engine load (nIMEP) bar 8.1 76 54 55 57 47 observed for unfueled PC conditions.
Unfueled PCSI, A = 1.65 800 Fueled PCSL, A = 2.24 200 e
T 4.0 —— Experiment s 4.0 —— Experiment 6.0e+02 800 1000 1200 1400 1600 1800 2.1e+03
64 2 ..L ‘ ) — MZ-WSR (RANS) s .. L — MZWSR (RANS) L 175 l I e ———— |
<54 T - 600 — © 5 r /
~44 7 10 0 :L\:) ~31 "7 0
LE:) CAD [ATDC] - 400 6 CE':) CAD [ATDC]
277 5 2 o2-
5 5
2 2 - 200 E,HE 8
oy A1
1 -
0 - - 0 0 -
-60 -40 -20 0 20 40 60 -60 —-40 -20 0 20 40 60 14

CAD [ATDC] CAD [ATDC]



Technical Accomplishments and Progress

Updates to the existing CFD framework

o CONVERGE CFD v3.0 was utilized with improved computational performance and scaling.

o Similar simulation results were obtained with respect to v2.4, with x4 performance increase:
= V2.4:42-82 hrs/cycle (unfueled-fueled). V3.0: 9-20 hrs/cycle (unfueled-fueled).
» Scaling performance around 95% was observed for up to 720 processors with v3.0.

o User Defined Function (UDF) structure changed to v3.0 for future model implementation.
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Responses to Previous Year Reviewers’ Comments

o This project was NOT reviewed last year but in 2020 o ‘most engine combustion conditions are under high

o “the newly developed model should be validated pressure ... The power-law scaling model seems to be
based on experimental results, in addition to DNS.” overly simplified, ...” C&F 2021(231): 111500
The simulations for the Purdue TJI rig and the Argonne o “Sandia is also listed a partner... How do they fit in” The
engine will be validated against the available collaboration with Sandia is mainly the use of the DNS
experimental data. database for high-Ka flame for this study (BP1).

o “will the proposed power-law scaling account for o “Strengthen the collaborations with the auto OEMs or
turbulence-chemistry interaction in the RANS other companies who are working on TJI.” Will encourage
framework?” Yes, it will. more OEM users when the targeted model is deployed.

o “feedback for each simulation to improve the sub- o “See some alternate development pathways” feasibility of
models being investigated was lacking.” (1) the use of the proposed model is much higher compared 2 years ago
machine learning to enhance power-law scale mixing o “when work with the engineering level simulation will be
model; (2) prototype model will be tested in Argonne undertaken?” BP2 and BP3, especially the later.
test case to grain feedback for iterative improvement. o “Will ANL also simulate the TJI rig?” No, the TRI rig will

o "how much more effort should we be putting into only be used to validate high-fidelity model. The targeted
RANS model?” The ultimate model is 2 RANS model RANS model will be tested in the Argonne engine by ANL.
and will be tes_ted in CONVERGE. It will be the focus o “In order to improve the sub-model development,
of Budget Period (BP)3. experimental data validation at high pressure and high

o “It would be good to show a comparison of predictions EGR conditions is needed for DNS.” We do have
of a flame with and without the addition of the power- experimental data to validate LES and RANS mode|ls .

law scaling.” This is done in the current BP2.



Collaboration and Coordination with other Institutions

Sandia National Lab (J.H. Chen)
Zhejiang University (H. Wang)
University of New South Wales
(E.R. Hawkes)

Purdue University (L. Qiao)

transducer

Argonne National Lab (R. Scarcell)

o Supply experimental validation data for the Engine speed  rpm 1200
Argonne MD engine intake boost | _ e o
o Conduct model validation pressure ' -
o Work done or being conducted Exhaustback | 0.98 0.98
* Identifided test conditions for modeling pressure
 Setting up simulations in CONVERGE Spark ignition  CAD 17 175
CED timing aTDCf '
Excess-air jmmm———— 3
E)‘“aus‘ ’ ratio (Aintake) - LiiO___£25_' 1.91 2.24
&> Fuel ratio of Prckonmeof the two _—_——————— -
Englne Ioad bar 8 1 7 6 T I;I\4UII65UI5LII65L;I CT 4 7
(nIMEP) IR !

Engine data: courtesy of A. Shah and M. Biruduganti, ANL



Remaining Challenges and Barriers

o Remaining challenges and Barriers for Budget Period 2

» Remaining discrepancy in the a posteriori testing of machine
learning assisted mixing model in the high-Ka DNS flame

» Model validation of high-fidelity LES/TPDF model in Purdue TJI
case including both pre-chamber and main chamber

» Remaining challenges and Barriers for Budget Period 3
» Generation of machine learning training data
» Development of machine learning assisted combustion model

» Testing and validation of machine learning assisted combustion
model in Purdue TJI rig

» Validation of machine learning assisted combustion model in
Argonne engine

18



Proposed Future Research

Following the project plan in Budget Periods 2 and 3

o Development of high-fidelity predictive LES model for the entire cycle of

TJI combustion.
o Validation and refinement of the high-fidelity LES combustion model in

Purdue model TJI rig ? UPH‘;%]QSII{E
o Development and testing of data-driven engineering RANS model for

TJI

o Implementation of the Purdue model into the commercial solver

(CONVERGE) used for final demonstration Argon ne 3

o Validation of data-driven engineering RANS model for TJI in an MD/HD NATIONAL LABORATORY
natural gas engine

Any proposed future work is subject to change based on funding levels.



SUMMARY

o The goal of project is to improve the predictive accuracy and
efficiency of turbulent combustion sub-models for the simulations
of premixed flame propagation initiated by pre-chamber turbulent
jet ignition.

o A hierarchical approach is developed to deduce accurate and
efficient engineering models for TJI.

o A machine learning assisted power-law scaling mixing model has
been developed and has shown promise for premixed flame
predictions.

o Validation of high-fidelity LES/PDF simulations for Purdue TJl rig is
conducted for pre-chamber simulations.

o Machine learning model for turbulent reaction rate is explored for
its feasibility and potential.

o A model validation framework based on CONVERGE is
established for the targeted engineering model testing.
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Technical Backup Slides

A posteriori testing of machine learning assisted mixing model

Simulation setup

o Large-eddy simulations for flow and
turbulence

n
2l
®
o

v

o Transported probability density function

(PDF) method for scalars
o Hybrid mesh/particle solver
o Dynamic Smagorinsky model
o Modified Curl micro-mixing model

o DRM 19 species reaction mechanism
for CH4 oxidization

o In Situ Adaptive Tabulation (ISAT) for
chemistry calculation

v

v

- = = -
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Technical Backup Slides

Further model validation in Purdue TJI rig (under more relevant condition than DNS)
o Numerical and simulation setup

Prechamber <
Spark plug

pressure —
transducer

* Numerics - Second order in Space and Time

Prechamber

e IR v’ QUICK scheme for reacting scalars
. P Aluminum v'Central differencing for velocity field
. I Haphragtn - Time step size - adaptable based on maximum allowed

Courant number of 0.3
Quartz

" ® window * Prechamber initial conditions:
15 i ‘/T =500 K
J Hot jet - v'P =1 bar

v'Equivalence ratio = 1.0

Main chamber

Main chamber B nrecsure « Eulerian Stochastic Field
pressure
transducer v"Number of stochastic fields = 8
(Biswas et al. Applied Thermal Engineering, 2016, 106:925) v’ Mixing model = IEM

v"Mixing constant = 3.0
v'Consistency Model = EMCF-O



Technical Backup Slides

Machine learning assisted combustion modeling: a priori analysis

o Machine learning
approach for modeling F

Machine Learning Algorithm

Model Random Forest
Number of Trees 200
Source Code MATLAB Libraries
Bootstrapping of training sample? Yes
Minimum sample size for split 5
Number of Input(n;)/Output(n,) 15/1
Maximum Features for Split n;/3

Machine Learning Input Variables

Physics Variables
Combustion T,C,VT,VC, V2T, V2C,T?,C%,5(¢),w
Turbulence - Resolved VU
Turbulence - Sub-filter Togs: I
Pressure p=p/pU? Vp



Technical Backup Slides

Pre-chamber Igniter with active

Collaboration and Coordination: . g
fueling capability

Argonne Engine Test Facility

o In-house, modular pre-chamber design
for flexibility needed for fundamental
studies

o Relatively simple to change PC volume,
nozzle geometry, number, and orientation

o Close collaboration with SNL and NREL
to achieve “common PC design”

2llg PC Head Instrumentation

o Single Cylinder Engine setup (Hyundai based) g'®
o Port fuel injected gaseous fuel
o Altronics CD-200 spark ignition system

o Full exhaust emission analysis capability

o Possibility of using NG or pure gaseous fuels

Number of cylinders 1 mzsfj:]eetrr!v:stj:cc:roled
Number of intake/exhaust values 1/1

Bore [mm] 130 M8 spark plug
Stroke [mm] 140

Displacement [L] 1.85 Gas supply check-valve
Compression ratio 11:1

Fueling system

Method Fumigation, well-mixed

Natural Gas Piped NG
(~ 93% CH4 v\v%)

5

?}fallel‘t’o cylinder head

Courtesy of A. Shah and M. Biruduganti, ANL




Technical Backup Slide

CFD Modeling Setup

CFD Code CONVERGE v2.4-v3.0
Grid main-chamber: 1 mm (w/ AMR 0.5 mm)
pre-chamber & jet region: 0.25 mm
Turbulence RANS RNG k-€
Ignition energy deposition w/ spherical source
Combustion direct chemistry
SAGE solver
Chemical 1. GRI Mech 3.0
kinetics 2. Aramco 1.3 skeletal

Un-fueled PCSI Fueled PCSI 0.0625 mm

AramcoMech 1.3
GRI-Mech 3.0 (253 sp, 1542 rxn)

(53 sp, 253 xn)
G DRGEPSA

*inaccuracy of IDT, LFS at
fuel-rich branch

0.125 mm

Skeletal mechanism
(46 sp, 274 rxn)

0.5 mm

0.250 mm





