
Hierarchically Informed Engineering Models For 

Predictive Modeling of Turbulent Premixed Flame 

Propagation in Pre-chamber Turbulent Jet Ignition

Haifeng Wang ― Principal Investigator, Purdue University

Riccardo Scarcelli ― FFRDC Co-investigator, Argonne National Laboratory

DOE program managers ― Michael R. Weismiller

June 22, 2022

2022 DOE Vehicle Technologies Office Annual Merit Review Virtual Meeting

Project ID: ACE151This presentation does not contain any proprietary, confidential, or otherwise restricted information



Overview

Timeline
o “Understanding and robust modeling tools for rapidly 

screening proposed designs based on sound metrics are 

lacking” ― U.S. DRIVE roadmaps

o “More robust ignition systems for lean and EGR, as well as 

boosted conditions that reduce combustion variability are 

needed” ― U.S. DRIVE roadmaps

➢While electrification is taking over the LD/MD (maybe even HD) 

on-road markets, pre-chamber ignition is still an enabling 

technology for future ICEs for off-road, rail, and possibly even 

marine and (perhaps) on-road engines. 

➢Pre-chamber ignition is also being evaluated as an enabling 

technologies for the use of H2 as an engine fuel in these 

sectors.

o This work overcomes these barriers by developing accurate 

and efficient models for turbulent flame propagation initiated 

by a pre-chamber turbulent jet ignition source. 2

Start Jan 1, 2020

End June 30, 2023

Budget period 2 July 1, 2021-June 30, 2022

Complete ~85% of budget period 2

Budget

Total Award $1,093,781

Purdue $650,000

Argonne (FFRDC) $225,000

Cost share (20%) $218,781

Budget period 2 $347,789

Barriers

Partners

o Purdue University
o Argonne National Laboratory



Significantly improve the predictive accuracy and efficiency of turbulent

combustion sub-models for the simulations of premixed flame propagation

initiated by pre-chamber turbulent jet ignition.

Relevance

Project Goal

o Objective 1: Acquire statistical 
properties of high-Karlovitz turbulent 
premixed flames from direct numerical 
simulations (DNS) to provide theoretical 
basis for pre-chamber turbulent jet 
ignition (TJI) model;

o Objective 2: Develop high-fidelity large-
eddy simulation (LES) model for TJI to 
yield consistency with the acquired 
statistical properties from DNS;

o Objective 3: Develop engineering 
Reynolds-averaged Navier-Stokes 
(RANS) model for TJI through machine 
learning by using data from high-fidelity 
LES.

3

A hierarchically informed engineering model for turbulent flame propagation



Milestones
budget period 2, July 1, 2021-June 30, 2022
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Milestone Type Description Status

A posteriori testing of the 

mixing frequency model is 

complete

Technical

Q1

The mixing frequency model informed by the power-law scaling observed 

in DNS has been incorporated in actual LES and a posteriori testing of 

the model has been completed to further validate the accuracy of the 

model.

95% 

completed

Development of high-

fidelity LES model for TJI 

is complete

Technical

Q2

The development of LES model for combustion in TJI systems has been 

completed.
Completed

Validation of the developed 

high-fidelity LES model for 

TJI in Purdue model TJI rig 

is complete

Technical

Q3-Q4

The model components based on the power-law scaling have been 

integrated together and the model validation in the Purdue model TJI rig 

has been finished.  

80% 

completed

A high-fidelity LES 

combustion model for TJI 

has been developed and 

validated

Go/No Go

A targeted high-fidelity predictive LES combustion model for TJI has been 

achieved to provide a tool for the reduced-order model development 

afterward. The model has been validated against the Purdue model TJI 

rig to reproduce the measured characteristics of the TJI rig including but 

not limited to the pressure rising history in pre-chamber and main 

chamber and the ignition timing. An overall error of the model prediction 

relative to the measurements within 30% is targeted.

On schedule



Approach

o Three levels of model 
descriptions
• Direct Numerical Simulations 

(DNS)
• Large-eddy simulations and 

probability density function 
(LES/PDF)

• Reynolds-averaged Navier-
Stokes (RANS)

o Three levels of testing 
complexities
• Sandia premixed jet flame 

DNS case
• Purdue model TJI rig
• Argonne MD single cylinder 

engine with TJI

o One model target
• Engineering TJI RANS model

5



Approach
o Stochastic modeling of turbulent combustion 

with LES/PDF

• Detailed chemical kinetics incorporated in 

turbulence without modeling requirement

• Machine learning assisted mixing model
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Δ
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1
𝑎

Machine learning:
𝑎 or 𝑏 = 𝑓 𝑅𝑒, 𝐾𝑎,Φ

Empirical model:

(Wang et al. Combust. 

Flame, 180 (2017), 110)



Approach

oMachine learning for turbulent 

reaction rate modeling
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A+B ➔ C+D        A:deficent
Arrhenius reaction rate 

(laminar chemistry model)
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Eddy dissipation model

𝑑𝑌𝐴
𝑑𝑡

= −
𝑌𝐴
τ𝑚

τ𝑚 =
4𝑘

𝜀

𝑑𝑌𝐴
𝑑𝑡

= −
𝑌𝐴
𝜏𝑐 τ𝐶 = 𝐹 ⋅ 𝜏𝐴

A new chemical time scale model

𝜏𝐴: effect of chemical kinetics
𝐹:  effect of turbulence

𝐹𝑇𝑟𝑢𝑒 = 𝜏𝐶/𝜏𝐴
High-fidelity TJI 
modeling data

Machine Learning 𝐹𝑀𝐿 ⋅ 𝜏𝐴 = 𝜏𝐶

TJI engineering 
model



Technical Accomplishments and Progress

oWork conducted during Budget Period 2
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A posteriori 

testing of 

machine learning 

assisted mixing 

model

High-fidelity 

model validation 

in Purdue model 

TJI rig

Machine learning 

assisted 

combustion 

modeling

CONVERGE 

CFD benchmark 

of Argonne TJI 

engine



Technical Accomplishments and Progress
A posteriori testing of machine learning assisted mixing model
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o Machine learning assisted mixing model improve coarse grid results

o Promise of the machine learning mixing model for premixed combustion modeling

o Remaining discrepancy is under-investigation.

DNS data
64x64x24
96x96x48
128x128x64

Traditional model Machine learning model



Technical Accomplishments and Progress
Further model validation in Purdue TJI rig (under more relevant condition)
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o Numerical and model setup

• OpenFOAM (LES with Smagorinsky turbulence 
model)

• Transported PDF method (stochastic fields)

• IEM mixing model

• Machine learning assisted mixing model

• Global chemistry CH4+2O2➔CO2+2H2O

• Spark model: energy deposition model

• Pre-chamber simulation (reported here)

• Main chamber simulation (in-progress)

• Unstructured grid (1 million cells for pre-chamber, 
3.5 million total)

(Biswas et al. Applied Thermal Engineering, 2016, 106:925)

(Lacaze et al., C&F, 2009, 156:1993)



Technical Accomplishments and Progress
Further model validation in Purdue TJI rig
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o Turbulence forcing is needed to allow transition from quiescent to turbulence (due to 

the limitation of turbulence model and spark model)

o The flame propagation is more plausible after turbulence forcing.

o The pressure growth is reasonably captured with turbulence forcing.

W/O turbulence 
forcing

With turbulence 
forcing



Technical Accomplishments and Progress
Machine learning assisted combustion modeling: a preliminary analysis
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𝐹𝑇𝑟𝑢𝑒 =
෫𝑆 𝐶𝐻4

𝑆 ෪𝐶𝐻4

LES/PDF pre-chamber simulation

o Laminar chemistry model 𝑆 ෪𝐶𝐻4 is very problematic

o F varies significantly (eight orders of magnitude 

difference)

o The variation is mainly near the flame front in a narrow 

region where turbulence-chemistry interaction is strong



Technical Accomplishments and Progress
Machine learning assisted combustion modeling: a preliminary analysis
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o Machine learning approach for 
modeling 𝑭

➢Random forest algorithm

➢Input features (15 parameters)

➢Pre-chamber data for the 
preliminary analysis

o Promising to use machine learning to produce better prediction for 

turbulent reaction rate (compared to laminar chemistry model)

o ML error ~ ±30%
o Add ~10% computational cost to laminar chemistry model



Technical Accomplishments and Progress

Benchmark CFD simulations completed for both active (fueled) and 

passive (unfueled) PCSI conditions

14

o Benchmark RANS simulations performed using 

the commercial solver CONVERGE CFD.

o Good agreement between simulations and 

engine data for fueled PC conditions.

o PC combustion rate under-prediction was 

observed for unfueled PC conditions.



Technical Accomplishments and Progress

Updates to the existing CFD framework
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o CONVERGE CFD v3.0 was utilized with improved computational performance and scaling.

o Similar simulation results were obtained with respect to v2.4, with x4 performance increase:

▪ V2.4: 42-82 hrs/cycle (unfueled-fueled). V3.0: 9-20 hrs/cycle (unfueled-fueled).

▪ Scaling performance around 95% was observed for up to 720 processors with v3.0.

o User Defined Function (UDF) structure changed to v3.0 for future model implementation.

>95% efficiency



Responses to Previous Year Reviewers’ Comments

o This project was NOT reviewed last year but in 2020

o “the newly developed model should be validated 

based on experimental results, in addition to DNS.”

The simulations for the Purdue TJI rig and the Argonne 

engine will be validated against the available 

experimental data. 

o “will the proposed power-law scaling account for 

turbulence-chemistry interaction in the RANS 

framework?” Yes, it will.

o “feedback for each simulation to improve the sub-

models being investigated was lacking.” (1) the use of 

machine learning to enhance power-law scale mixing 

model; (2) prototype model will be tested in Argonne 

test case to grain feedback for iterative improvement. 

o “how much more effort should we be putting into 

RANS model?” The ultimate model is a RANS model 

and will be tested in CONVERGE. It will be the focus 

of Budget Period (BP)3.

o “It would be good to show a comparison of predictions 

of a flame with and without the addition of the power-

law scaling.” This is done in the current BP2. 16

o “most engine combustion conditions are under high 

pressure … The power-law scaling model seems to be 

overly simplified, …” C&F 2021(231): 111500

o “Sandia is also listed a partner… How do they fit in” The 

collaboration with Sandia is mainly the use of the DNS 

database for high-Ka flame for this study (BP1). 

o “Strengthen the collaborations with the auto OEMs or 

other companies who are working on TJI.” Will encourage 

more OEM users when the targeted model is deployed.

o “See some alternate development pathways” feasibility of 

the proposed model is much higher compared 2 years ago 

o “when work with the engineering level simulation will be 

undertaken?” BP2 and BP3, especially the later.

o “Will ANL also simulate the TJI rig?” No, the TRI rig will 

only be used to validate high-fidelity model. The targeted 

RANS model will be tested in the Argonne engine by ANL.

o “In order to improve the sub-model development, 

experimental data validation at high pressure and high 

EGR conditions is needed for DNS.” We do have 

experimental data to validate LES and RANS models



Collaboration and Coordination with other Institutions
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Sandia National Lab (J.H. Chen)

Zhejiang University (H. Wang)

University of New South Wales 

(E.R. Hawkes)

Purdue University (L. Qiao)

Argonne National Lab (R. Scarcelli) Unfueled PCSI Fueled PCSI

Engine speed rpm 1200

Intake boost

pressure
bar 1.16 1.04

Exhaust back 

pressure
bar 0.98 0.98

Spark ignition

timing

CAD 

aTDCf
-17 -17.5

Excess-air

ratio (𝜆𝑖𝑛𝑡𝑎𝑘𝑒)
- 1.50 1.65 1.91 2.24

Fuel ratio of 

PC/Intake
% - - 2.2,   4.1,   6.6 7.7

Engine load 

(nIMEP)
bar 8.1 7.6 5.4,   5.5,   5.7 4.7

o Supply experimental validation data for the 

Argonne MD engine

o Conduct model validation

o Work done or being conducted

• Identifided test conditions for modeling

• Setting up simulations in CONVERGE 

CFD

Pick one of the two

Pick one of the three

Engine data: courtesy of A. Shah and M. Biruduganti, ANL



Remaining Challenges and Barriers
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o Remaining challenges and Barriers for Budget Period 2

➢Remaining discrepancy in the a posteriori testing of machine 

learning assisted mixing model in the high-Ka DNS flame

➢Model validation of high-fidelity LES/TPDF model in Purdue TJI 

case including both pre-chamber and main chamber 

➢Remaining challenges and Barriers for Budget Period 3

➢Generation of machine learning training data

➢Development of machine learning assisted combustion model

➢Testing and validation of machine learning assisted combustion 

model in Purdue TJI rig

➢Validation of machine learning assisted combustion model in 

Argonne engine



Proposed Future Research

Following the project plan in Budget Periods 2 and 3

oDevelopment of high-fidelity predictive LES model for the entire cycle of 

TJI combustion. 

o Validation and refinement of the high-fidelity LES combustion model in 

Purdue model TJI rig

oDevelopment and testing of data-driven engineering RANS model for 

TJI

o Implementation of the Purdue model into the commercial solver 

(CONVERGE) used for final demonstration

o Validation of data-driven engineering RANS model for TJI in an MD/HD 

natural gas engine

19

Any proposed future work is subject to change based on funding levels. 



SUMMARY
o The goal of project is to improve the predictive accuracy and 

efficiency of turbulent combustion sub-models for the simulations 

of premixed flame propagation initiated by pre-chamber turbulent 

jet ignition.

o A hierarchical approach is developed to deduce accurate and 

efficient engineering models for TJI.

o A machine learning assisted power-law scaling mixing model has 

been developed and has shown promise for premixed flame 

predictions.

o Validation of high-fidelity LES/PDF simulations for Purdue TJI rig is 

conducted for pre-chamber simulations. 

o Machine learning model for turbulent reaction rate is explored for 

its feasibility and potential.

o A model validation framework based on CONVERGE is 

established for the targeted engineering model testing. 
20



Technical Backup Slides
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Technical Backup Slides
A posteriori testing of machine learning assisted mixing model
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Simulation setup

o Large-eddy simulations for flow and 

turbulence

o Transported probability density function 

(PDF) method for scalars

o Hybrid mesh/particle solver

o Dynamic Smagorinsky model

o Modified Curl micro-mixing model

o DRM 19 species reaction mechanism 

for CH4 oxidization

o In Situ Adaptive Tabulation (ISAT) for 

chemistry calculation

Particle Solver

Mesh Solver



Technical Backup Slides
Further model validation in Purdue TJI rig (under more relevant condition than DNS)
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o Numerical and simulation setup

• Numerics - Second order in Space and Time

✓QUICK scheme for reacting scalars

✓Central differencing for velocity field

• Time step size - adaptable based on maximum allowed 
Courant number of 0.3

• Prechamber initial conditions:

✓T = 500 K

✓P = 1 bar

✓Equivalence ratio = 1.0

• Eulerian Stochastic Field

✓Number of stochastic fields = 8

✓Mixing model = IEM

✓Mixing constant = 3.0

✓Consistency Model = EMCF-O

(Biswas et al. Applied Thermal Engineering, 2016, 106:925)



Technical Backup Slides
Machine learning assisted combustion modeling: a priori analysis
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o Machine learning 

approach for modeling 𝑭

Machine Learning Input Variables



Technical Backup Slides

Collaboration and Coordination: 
Argonne Engine Test Facility

o Single Cylinder Engine setup (Hyundai based)
o Port fuel injected gaseous fuel
o Altronics CD-200 spark ignition system
o Full exhaust emission analysis capability
o Possibility of using NG or pure gaseous fuels

Number of cylinders 1

Number of intake/exhaust values 1/1

Bore [mm] 130

Stroke [mm] 140

Displacement [L] 1.85

Compression ratio 11:1

Fueling system

Method Fumigation, well-mixed

Natural Gas Piped NG

(~ 93% CH4 v\v%)

Pre-chamber Igniter with active 
fueling capability

o In-house, modular pre-chamber design 
for flexibility needed for fundamental 
studies

o Relatively simple to change PC volume, 
nozzle geometry, number, and orientation

o Close collaboration with SNL and NREL 
to achieve “common PC design”

25

Courtesy of A. Shah and M. Biruduganti, ANL



Technical Backup Slide

CFD Modeling Setup
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CFD Code CONVERGE v2.4-v3.0

Grid
main-chamber: 1 mm (w/ AMR 0.5 mm)

pre-chamber & jet region: 0.25 mm

Turbulence RANS RNG k-ε

Ignition energy deposition w/ spherical source

Combustion

MZ-WSR

direct chemistry
SAGE solver

Chemical
kinetics

1. GRI Mech 3.0
2. Aramco 1.3 skeletal




