2023 Annual Merit Review

Development and Demonstration of Zero-Emission Technologies for Commercial Fleets (SuperTruck 3)

Maarten Meijer Ph.D. – Principal Investigator PACCAR Inc.

June 15, 2023

Project ID: ELT285

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

PACCAR SUPERTRUCK 3

Timeline

Start Date:May 2022End Date:April 2027Completion:20%

Budget

Total Project Funding DOE: \$33.0M. Cost Share: \$35.4M

FY 2023 DOE Funding: \$9.7M

Barriers

<u>Real World Deployment</u> of Zero-Emission Vehicles and Infrastructure

ZEV Technology Development: Improved Freight-Efficiency, Reduced Cost, and Extended Applications

Infrastructure Development: Improved Infrastructure Including High-Power Charging, Micro-grid, and Integrated Charging Management

Partners

Relevance

Overall Objectives	 ≥ 75% CO₂ Reduction (On Fleet Level, Compared to Diesel Baseline) ≥ 30% Total Cost of Ownership Reduction (Compared to Current BEV Portfolio) Environmental Equity and Justice
Objectives This Period	 Deployment of Gen 1 BEV & Charging Infrastructure Definition of Gen 2 and Gen 3 BEV Level 2 ADAS and Fleet-Connectivity Requirements Definition of (High-Power) Charging Infrastructure
Impact	 Collaboration Across Industry to Decarbonize Commercial Vehicle Transportation Learn From Fleet Deployment About Barriers to ZEV Adoption and Develop Targeted Technology Improvements Evaluation of Higher Risk ZEV Technologies To Improve Efficiency & Cost

Environmental Equity and Justice

- PACCAR Environmental Lifecycle Assessment Tool
- PACCAR Sponsored Programs
 - UW Electric Truck
 - Capstone Programs
- PACCAR Day Events
 - Historically Black Colleges and Universities (HBCUs)
 - Local Universities
- STEM Outreach •

Key Technologies

Vehicle

- BEV L2 ADAS
- Connected Spec'ing & TCO
- Cab & Chassis
- FCEV Analysis

Powertrain

- Increased Voltage
- Next Gen. Batteries & e-Axle
- Power Electronics & Auxiliaries
- Systems Integration

- High Power Charging
- Route & Charging Optimization
- Micro-Grid Integration
- Utility Integration (V2X)

Vehicle Deployment Generations

	F	Closed Track							
	May 2022 – April 2023	May 2023 –	April 2024	May 2024 – April 2025	May 20	25 – April 2026	May 2026 – April 202		
	Gen 1 (4 Trucks		G	en 2 & Gen2+ (10 Truck	s)	Ger	n 3 (2 Trucks)		
Program Activities	BEV Baseline Definition, Concept Ge	eneration	Imp G	roved Product Deployn Select Technology Upfit en 3 Concept Generatio	nent s on	Build Development Units Evaluate Technology Maturity			
Applications	Local			Gen1 + Vocational		Heavy Duty			
CO ₂ Reduction	Diesel to Current E	BEV		Increased Applications		Challen	ging Applications		

Timing

		T	RL 1			TF	RL 2 &	3		T	RL 4			1	IRL 5				TRL 6	1	
			BP1		BP2 BP3				BP4				BP5								
	02	2022	04	01	20	023	04	01	20	24	04	01	20	025	04	01	20	26	04	20	27
	Q2	د <u>ب</u>	nec'ing	19	<u>Q</u> 2	Charg	V4	TY.	Q2	ey l	Q4	Ty I	Q2	دي ب	Q4	L A	Q2	Q.J	¥9	T.A.	Q2
Vehicle Baseline		5	pee mg		Gen	. 1	,015														
Charging Infrastructure		s	pec'ing	\geq	Desi	gn	Inst	allation		Micro-g	grid										
Connectivity		E	Definitio	n	Σ			Dev	elopmen	t				Proto T	esting						
e-Axle			Deve	lopment		Σ	Bu	uild	<u>></u>	Test	It	itegrati	on								
Improved Vehicle Deployment								Gen	. 2			Build	and Re	trofit	>	Gen. 2+	-			-	
Charging Infrastructure					De	sign	>	Proto 7	Fest	> Fast	Chargin	ıg									
Level 2 ADAS			Definiti	ion			Deve	lopmen	t		Proto T	esting									
e-Axle (Next Gen)			Devel	opment		>	Bui	ld	>	Proto Te	esting	>	Integra	ation							
Batteries		Conc	ept Defi	nition	Σ	Deve	elopmer	ıt	>	Build			Proto T	esting	Σ	Integra	tion				
Final Demostration]	Definitio	on	Σ	Desi	gn & D	evelopn	nent		Valid	ation		Pro	to Test	ing	Gen	. 3			
Data Evaluation (TCO/GHG)								7	7			7	★			7	☆			7	7
FCEV Analysis		Spec'ir	1g	Develo	pment	>	Virtu	al Testi	ing												

Fleet Vehicle Deployment

Swift Transportation

• Jurupa Valley Terminal

Vehicle Deployment

- 2 Peterbilt 579 EV
- 2 Kenworth T680e
- Data Logging
- Driver Training

Infrastructure & Micro-Grid

Scope Included:

- 500 kWh Battery Energy Storage System (BESS)
- 500 kW Solar Charing Array
- 10 180kW DC Fast Chargers
- Q1 2023 Initial Deployment
- Q2 2024 Full Deployment

Status:

- Permits Granted
- Purchase Orders Submitted
- 2 of 10 Chargers Installed

Fast Charging Scope Removed:

- Reduced Incentives from Utility Supplier
- Support Engineering Vehicles (Closed Track)

BEV Gen2/2+ Scope Definition

- Increased Range
- Increased Charging Rate
- Improved Vehicle Packaging & Layout
- Advanced Thermal Management Controls
- BEV Specific Fleet V2C Connectivity
- Expanded Vehicle Applications
- 30% Total Cost of Ownership Reduction

Connectivity

Scope:

- BEV Specific
- Include Charging Infrastructure
- Leverage: Co-Optimization of Vehicles and Routes (EEMS-108)

Features:

- Vehicle Range Prediction
- Diver Coaching & Eco-Score
- V2X Communication
- Truck Specification Optimization

Status:

- Requirements Completed
- Data Loggers on Baseline BEV's

Gen3 BEV Targets

500 mi+ **eFUELS - HYDROGEN INTERNAL COMBUSTION ENGINE & FUEL CELL ELECTRIC** Longhaul Distance **PLUG-IN HYBRID** BEV **FCEV** Regional 0 **Increase BEV** Local Ŷ**h**i Applications 100 mi Load 16k lbs 80k lbs+

Deliver 65k Equivalent Payload, Over 400-500 Miles, Under NA Highway Drive Cycle Conditions

- Extend BEV Applications
 - Hard to De-Carbonize Sectors
 - Heavy-Duty Trucking
- High Energy Density
 - Range / Load

BEV Gen3 Scope Definition

- Longer Range
- Faster Charging
- Improved Packaging, Weight Distribution, Payload
- Advanced BEV Specific L2 ADAS
- Enable Expanded EV Adoption Across Applications
- Stretch Goal: 40% Total Cost of Ownership Reduction

Battery Development

- Higher Energy Density
- Better Fast Charging Performance
- Requirements Target
 - Pack Level Density: 210 Wh/kg
 - Charging Time: Preliminary 75 Mins (6-97%)
 - Voltage: 870V nominal and 1000V Peak
- Vehicle Space Claim Evaluated
- System Boundary Interface Defined

E-Powertrain

Next Generation e-Axles from accelera

Increased Efficiency

- Higher Operating Voltage
- Twin Countershaft Transmission
- 3 Speed Transmission
- Improved Packaging

• Integrated Inverter, Shifter Controller

Power Electronics

Increased Efficiency

- Higher Operating Voltage
- Higher Operating Amperage
- Improved Cooling Performance

Reduced Total Cost of Ownership

- Integrated Power Electronics
- Reduced HV Connectors/Cabling

Auxiliaries

Fully Electrified Power Steering

• Elimination of Pump, Hoses

Cabin Heat Pump

- Increased HVAC Efficiency
- Air Heater for Lower Ambient Temperature

• Air Compressor

- Integrated Inverter & Controller
- Improved Packaging of Air Dryer, Tanks

ADAS

Scope:

- Adaptive Cruise Control (ACC)
- Active Lane Keeping (ALK)
- Enhanced Predictive Cruise Control (PCC)
 - Predefined Route
 - Road Curvature
 - Speed Limit Integration
 - Live Traffic, Accidents, Construction

Benefits:

- Driver Safety / Comfort
- Energy Efficiency Improvement

Response to Reviewers' Comments

• First Year: No Reviewer Comments to Address

Partnerships/Collaborations

DACCA P SUPERTRUCK 3

PACCAR OEM Manufacturers

Infrastructure Energy Management & Microgrid Development

Fleet Partner and Featured Operator

Development of Commercial Vehicle High Energy Density Battery

Development of High Efficiency e-Axle's

GHG, TCO, Environmental Equity and Justice Modeling / Analysis

Powertrain Recommender Tool / ADAS / V2X Simulation Tool Development

V2V Perception Technologies

High-Power Chargers Hardware Development

Remaining Challenges

Vehicle	Powertrain	Infrastructure
 Gen3 BEV Targets Analysis Cab / Chassis Analysis FCEV ADAS: Constrained Test Environment 	 High Voltage Architecture Battery Performance / Life Component Integration 	Supply Chain Constraints

Proposed Future Research

Vehicle

- Finalize Cab and Chassis Design
- Generate ADAS & Connectivity
 Architecture Design
- Fuel Cell EV Concept Design

Powertrain

- Battery Cells Development Design
- Design Freeze for Technology
 Improvement Components
- Prototypes for Next Gen e-Axle

Infrastructure

Lab Testing for High-Power Charging Sub-system Prototypes

•

BEV Deployment with Charging
 Infrastructure

Any proposed future work is subject to change based on funding levels.

Summary

PROGRAM ON TRACK TO MEET TARGETS:

Vehicle & Infrastructure

Deployment

- Gen1 BEV and Chargers Deployed
- Extensive Data-Logging Ongoing

BEV & Charger Development

- Gen2 and Gen3 BEV Scoped Definition
- Battery & e-Axle Development Ongoing
- Power Electronics & Aux. Development Ongoing

ADAS & Connectivity

- BEV Specific Scope and Requirements in Place
- V2V and V2X Simulation Activities Ongoing

Technical Backup Slides

E-Powertrain

PACCAR SUPERTRUCK 3

14Xe e-Powertrain

- Axle configuration: 4x2, 6x2, 6x4
- GAWR range per axle: 15 23k lbs.
- 1 & 2-speed planetary & 2 & 3-speed twincountershaft transmissions
- High voltage range: 450-900V, Evaluating 1000-1200V
- Inverter Location: Chassis mounted
- FUSA (ISO-26262) / ASIL C: Yes
- Cybersecurity (ISO-21434/R155): Yes

V4.5 Enhancements

- Voltage
 - Future proofing voltage requirements @ 800V (750V Nominal)
- Performance
 - Higher continuous power capability
 - Achieve rated power across a broader motor speed band
 - Higher peak & continuous torques, while torque is available across a broader motor speed band
 - Improved drivability due to reduced power droop between gears
- Efficiency
 - Higher efficiency across a wider speed range
- Vehicle integration
 - Improved vehicle integration, manufacturability, and serviceably with high voltage (DC & AC) quick connectors
- Design & Supply Chain Control
 - Increased engineering control over the motor & inverter, while reducing supply chain complexity