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VTO Energy Storage R&D Overview and Strategy

CHARTER: Develop battery technology that will enable large market penetration of electric drive vehicles
GOALS: By 2025 bring pack level costs down to $100/kWh = By 2030 bring pack costs down to $75/kWh

*Critical Materials-free, use of recycled materials, and capable of fast charge
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What Chemistries Can Help Meet DOE’s Cost Goal?

Pack Cost to OEM, S/kWh

Projected Cost for a 100kWh,,,.,, 8OkW Battery Pack

These are best case projections: all chemistry problems solved, performance is not limiting, high volume manufacturing, does not
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include extreme fast charge capability. Si = $15/kg, LoPrice Si=S$5/kg, Li=5100/kg, LoPrice Li=531/kg
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What Chemistries Can Help Meet DOE’s Cost Goal?

Pack Cost to OEM, S/kWh

Projected Cost for a 100kWh,,,.,, 8OkW Battery Pack

These are best case projections: all chemistry problems solved, performance is not limiting, high volume manufacturing, does not
include extreme fast charge capability. Si = $15/kg, LoPrice Si=S$5/kg, Li=5100/kg, LoPrice Li=531/kg
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System Cost ($/kWh)

DOE Vehicle Technologies Battery R&D Roadmap

GOAL: Research new battery chemistry and cell technologies in order to reduce the cost
of electric vehicle battery packs to less than $75/kWh by 2030 (cost parity with ICE).
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Higher cathode capacity
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Lithium-Metal & Li/Sulfur

Solve cycle life/ catastrophic
failure

reduce excess lithium and
electrolyte
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System Cost (S/kWh)

DOE Vehicle Technologies Battery R&D Roadmap

GOAL: Research new battery chemistry and cell technologies in order to reduce the cost
of electric vehicle battery packs to less than $75/kWh by 2030 (cost parity with ICE).
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Graphite/High-Capacity Cathode

* Higher cathode capacity
* Low/no Cobalt

Recycling & fast charge

Higher anode capacity
* Cycle/calendar life
* Fast charge

Lithium-Metal & Li/Sulfur

 Solve cycle life/ catastrophic
failure

* reduce excess lithium and
electrolyte
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Silicon Anodes: Key Technical Results

Targets Challenges
* 1,000+ mAh/g & 350+ Wh/kg  Large first-cycle irreversible loss
* 10 years & 1000 cycles * Low cycle and calendar life / High capacity fade

Silicon Anodes Historical Performance
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Targets Challenges
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Silicon Anodes: Key Technical Results

Targets Challenges
* 1,000+ mAh/g & 350+ Wh/kg  Large first-cycle irreversible loss
* 10 years & 1000 cycles * Low cycle and calendar life / High capacity fade
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Silicon Anodes: Key Technical Results

llllllllll

||||||||||||||||||||||||||||||||||




Silicon Anodes: Key Technical Results
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VTO Silicon Anode Focus Areas

Through a collaboration of Universities (Seedlings, FOAs), National Labs (Seedings, SCP, FOAs), and Industry
Partners (USABC, FOAs), develop Silicon Anode Technologies across a range of TRLs to meet VTO’s goals.

Goal: Develop a Silicon Anode that can deliver
350 Wh/kg, 10-year calendar life, and 1,000+ cycles.

Battery Materials Applied Battery
Research (BMR) Research (ABR) BatterYrII:f\;ce_lc;pment
TRL 2-3 TRL3 -4

Seedlings

Silicon Consortium Project (SCP)

UNITED STATES ADVANCED BATTERY CONSORTIUM
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Approaches to Improving Silicon Calendar Life

Approach

Si coating
Si doping
Novel Electrolytes
Novel Si and
electrode

structures

Modeling/
Diagnostics
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Silicon Consortium Project (SCP)
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Silicon Consortium Project (SCP)

Six Interconnected Research Thrusts

Calendar Life SCP Goal: Deliver >2Ah full cells with Si-based
] anodes that achieve:
Energy Density (1,000 cycles at C/3, useable energy >375

Wh/kg, energy density >750 Wh/L,
and a calendar life >10 years

FY23Q4 Milestone: Deliver >2Ah full cells with
Si-based anodes that achieve:
(1,000 cycles at C/3, useable energy >350 )
Wh/kg, energy density >700 Wh/L,
and a calendar life >5 years
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Silicon Consortium Project: Materials Development

To understand the causes of calendar life we require multiple silicon types that demonstrate good cycling performance.
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Silicon Consortium Project: Accelerated Calendar Life Protocols
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Cell Voltage

|

30 day OCV w/daily current pulse

A three-tiered system acts as a stage gate process
for materials development and the accelerated

testing of hypotheses.

50 RPT (3@ C/10) HPPC cycle
"0 10 20 30 40
Time (Days)

Tier 1 (V-hold screening in LFP coin cell)

~3 week test, excess Li
(fast & easy but qualitative,

semi-quantitative with advanced analysis)

Tier 2 (OCV-RPT aging in LFP coin cell)

~3 month test, excess/limited Li

(fast AND guantitative and avoids cathode effects)

Tier 3 (OCV-RPT (USABC) aging in NMC coin/pouch

cell)

12+ month, Si-NMC, essentially USABC test

(most representative long term calendar aging)
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\

/

v1 Tiered Electrochem. Protocols*
(v2 will incorporate in-situ tools)
Tier 1: Qualitative screen (3 weeks)
Tier 2: Semi-quantitative (3 months)
Tier 3: Quantitative (12 months)
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Testing
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/

Tiered protocol

A 4
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Tiered protocol results
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* Tiers 1&2 are downselection
tools. Tier 3 is required to
measure actual calendar aging.
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Silicon Consortium Project: Early Calendar Life Data
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-Normalized capacity retention is the same within error for all silicon’s and

both cathodes for the first two months

- Change in ASl is similar for all samples paired with NMC with some small
changes emerging. B:Si shows minimal impedance gain against LFP
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Tier 3 protocol

Capacity Retention (%)
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o _. .
%s Sila 2020 EERE VTO FOA for Silicon Anodes

Interim demo cells built by prototyping partner with improved particle and electrode
0.5C Charge + CV to 0.05C, 0.33C Full Discharge, 2.5-4.2V

Predicted Recoverable Energy (Wh/L) vs. Storage Time (days)
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Group14: Lithium-Silicon Batteries to Displace Internal Combustion Engines GROUPIA

105%
Interim achieved >800 cycle life

——Baseline cells
100%

Alignment of leading industry and national lab partners along the battery supply chain

—e—|nterim Cells

X
c
. Next-gen silicon anode material SCC55™ (Group14) S o5y
. Conductive additive optimization (Cabot) o
. Electrolyte optimization (Silatronix) E
. Binder optimization (Arkema) E 90%
. Advanced characterization of each component (PNNL) §
. Battery design optimization (Farasis) o .
Demonstrated continuous improvements in optimizing key battery components
80%
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120%
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EE0009188: Structurally and Electrochemically Stabilized Si-rich Anodes for EV Applications

Summary of achievements (FY2021-2022)

>1000 cycles achieved on 4 cell designs using 100% active Si anodes and
NMC 622 cathodes. 5t cell design projected to exceed 1000 cycles with > 5
mAh/cm? cathode loading.

Projected >10 years of calendar life after >1 year of storage tests, using
recovered capacity from cells stored at 30 °C, 40 °C, 50 °C, 60 °C and 70 °C
at4.2 V.

= >95% recovered capacity after 14 months @ 4.2V, 50 °C.
= >98% recovered capacity after 15 months @ 4.2V, 40 °C.
= >99% recovered capacity after 16 months @ 4.2V, 30 °C.

Core energy density (i.e. anode, cathode, current collectors, and separator)
ranged from 850 Wh/L to 1010 Wh/L.
= Packaged energy density ranged from 500 Wh/L to 600 Wh/L in a 300 mAh sized
cell.
Packaged energy density projection in 100 Ah-size cell:
= with NMC622: 800 Wh/L, 270 Wh/kg.
=  with NMC811: 920 Wh/L, 320 Wh/kg.

EMNCVIX

h)

<

Paty{

2

[

Discharge C

Normalized Energy

alized Recovered Capacity

Norm

Cycle life data of BP1 and BP2 300 mAh-class cells

0.30+
0.28-
0.26
0.24-
0.22+

0.20

o o =

o v o

5 & o
| | |

0.70

—

C/3 cycling, 2.5-4.2 'V, 30 °C.

010 Wh/L
980 Wh/L

950 Wh/L
920 Wh/L
880 Wh/L

! T
0 200

T T T
400 600 800

cycle
Calendar life of EP1 and BP2 300 mAh-class cells

1.00
0.90+
0.80
0.70
0.60

1.00
0.90
0.80
0.70+
0.60

O_.

=

==
I |

0.80
0.70+
0.60

. - ] ] L] ] . L} L] L] L] L] L] L] L

0F

projected to > 10 years of calendar life,
16 months of storage @ 4.2 V.

or

aumesadwa)

0s

2 4 6 8 10 12 14 16
Storage time (months)

T
1000

cy &

ergy



Silicon FOA Highlights — All Solid State Si Pouch Cell = Solid Power

23

Developed a high energy all-solid-state Si composite anode
o 1500 - 2000 mAh/g capacity (at electrode level)
o Roll-to-roll electrode coating process

Demonstrated long cycle life and calendar life in Si-NMC all-solid-state

pouch cells
o Cycle life of 1100 at C/5 — C/5, 45°C (> 300 Wh/kg cell design)
o Calendar life @ 50°C: Day 96, 3.0% capacity fade (average of 3 cells)

Solid State Electrolyte NMC Composite Cathode
Scalable, highly conductive, High Ni content NMC, low
electrochemical stable, impedance, long life
non-flammable x c 120%
e — , _ 2 100%
4 Si Composite Anode E 80%
. . . =
High capacity, I'_ngh g con
\ rate, and long life -
S o _ % -"E; 40%
Simple Cell Architecture - 9 o

High energy, long cycle and
calendar life, extremely safe,
low cost manufacturing — —

».SolidPower -

Slot-die Si anode coating Solid state Si pouch cell

Solid State Si-NMC Cell Cycle Life
3 mAh/cm?, C/5- C/5, 100% DOD, 45°C

————

* 1600 mAh/g Si anode
* High Ni NMC cathode
* >300 Wh/kg cell design

0 200 400 600 800 1000 1200

Cycles
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Electrolyte Design for Li-ion Batteries using Micro-sized Si (uSi) Anode - University of Maryland

Electrolyte should be able to form LiF-rich SEIl on uSi £ 1509 S
. . 2 o] serees .
Swfa?(r;ﬁ:ﬁg”:kb';_?gl » LiF SEI does not crack but organic-inorganic g 1 20-.
’ " SEI cracks due to the weaker binding of uSi to S 90- .
LiF SEI than to organic-inorganic SEI. = 1
A » Cracked organic-inorganic  SEI allows £ 60"
electrolytes penetration and forms new SEI in £ 30
Silicon-philic organic-rich SEI pulverized pSi. However, stable LiF can block D
Strong bonding at SEI/L{Si w 0

l life and calendar life.

electrolyte penetration enabling uSi electrode
to maintain thickness and enhance the cycle

0 50 100 150 200
Cycle Number (n)

uSi electrode thickness change along cycles in two electrolytes

Calendar life of uSi with LiF SEI is comparable with graphite
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Cycling of NCA/uSi pouch cells in designed electrolyte is stable

Specific Capacity (mAh g'1)

Leakage currents of 100nm Si, 10um graphite, and 40pum Si during
24 | voltage hold in different electrolytes
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Electrochemical performance of 100 mAh NCA/Si (5um) pouch cell in
designed electrolytes without pre-lithiation (4 mAh cm-2, N/P of ~1.1)
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For More Information...

Brian Cunningham, Batteries and Electrification R&D, Vehicle Technologies Office
U.S. Department of Energy, 202-287-5686, Brian.Cunningham@ee.doe.gov

https://www.energy.gov/eere/vehicles/vehicle-technologies-office
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