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recommendation, or favoring by the United States government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government or any
agency thereof.
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Acronyms
ABAA Advanced Lithium Batteries for Automobile Application
ABF Annular bright-field
ABFSTEM Annular bright-field scanning transmission electron microscope
ABFTEM Annular bright-field transmission electron microscopy
ABMR Advanced Battery Materials Research
ABR Applied Battery research
AC Alternating current
ACS American Chemical Society
AEI Anode electrolyte interphase
AEM Advanced Electrolyte Model
AER All-electric range
AES Atomic emission spectroscopy
AFM Atomic force microscopy
AGG Aggregates
AGM Absorbent Glass Mat (batteries)
AH Ampere hour
Al Artificial Intelligence
AIMD Ab initio molecular dynamics
ALD Atomic layer deposition
ALS Advanced Light Source (facility)
AMO Advanced Manufacturing Office
AMP Atomistic Machine-learning Package
AMR Annual Merit Review
AMY Actual meterological year
AN Acetonitrile
ANL Argonne National Laboratory
AOI Area of Interest
APL Applied Physics Laboratory
APS Advanced Photon Source (laboratory)
AR Auto-regressive (model)
ARC Accelerated rate calorimetry
ARL Army Research Laboratory
ASEI Artificial SEI
ASI Area-specific impedance
ASLSB All solid lithium-sulfur battery
ASME American Society of Mechanical Engineers
ASR Area-specific resistance
ASSB All solid-state battery
ATM Asymmetric temperature modulation
ATR Attenuated total reflection
ATRP Atom transfer radical polymerization
BDE Bond dissociation energy
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BE
BERT
BESS
BET
BEV
BL
BLI
BM
BMF
BMG
BMR
BMS
BMU
BNL
BOL
BOP
BP
BPC
BQ
BSE
BTC
BTFE
BTMS
BTO
BV
BYU
CAD
CAEBAT
CAFE
CAMP
CB
CBD
CBM
CBT
CcC
Ccccv
CCD
CCEMM
CDD
CDI
CE
CEl
CFM
CG
CHNS

Baseline electrolyte

Bidirectional Encoder Representations from Transformers (model)
Battery energy storage system

Brunauer, Emmett, and Teller (surface area analysis)
Battery electric vehicle

Baseline

Beyond Lithium-ion

Ball milling

Battery manufacturing facility

Ball-milled glass

(Advanced) Battery Materials Research (program)
Battery management system

Battery Management Unit

Brookhaven National Laboratory

Beginning of life

Balance of plant

Budget period

Black phosphorus/Ketjenblack-multiwalled carbon nanotubes composite
1-4-benzoquenone

Backscatter and secondary electron (imaging modes)
Battery Technology Center

Bis(2,2,2-trifluoroethyl) ether
Behind-the-Meter-Storage

Building Technologies Office

Bond valence

Brigham Young University

Computer-aided Design

Computer-aided engineering of batteries

Corporate Average Fuel Economy

Cell analysis, modeling, and prototyping (facility)
Carbon black

Conductive binder domain

Conduction band minimum

Cantilever Beam Test

Constant current

Constant current, constant voltage

Critical current density

Center for Complex Engineered Multifunctional Materials
Charge density difference

Cobalt Development Institute

Coulombic efficiency

Cathode electrolyte interfaces

Cubic feet per minute

Core-gradient

Carbon hydrogen and nitrogen (analyzer) system
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CIF Chemical Instrumentation Facility
CI-NEB Climbing-image nudged elastic band
CIP Contact ion pair

CMC Carboxymethyl cellulose

CMD Classical molecular dynamics

CN Coordination number

CNSSM Carbon-nitrogen stainless steel mesh
CNT Carbon nano-tubes

COP Coefficient of penetrance

COTS Commercial-off-the-shelf

CP Co-precipitation

CPE Constant phase element

CR Capacity retention

CRADA Cooperative research and development agreement
CSE Chemical Sciences and Engineering (at ANL)
CSHS Core-shell hollow spheres

CSM Continuous shape measure

CSTR Continuous stirred tank reactor

CT Computed tomography

CUP Constitutional underpotential plating
Cv Cyclic voltammetry

CvD Chemical vapor deposition

CYy Calendar year

DAB Dual active bridge (converter)

DCE Diluted concentration electrolyte
DCFC DC fast charging

DCIR Direct current inner resistance

DCPC Dicyclopentadiene compound

DDSA Directly derived sulfur assembled
DEG Diethylene glycol

DEMS Differential electrochemical mass spectrometry
DES Deep eutectic solvent

DFPT Density functional perturbation theory
DFT Density function theory

DFTB Density functional tight binding (calculation)
DHB 2,5-dihydroxybenzoic (acid)

DI De-ionized (water)

DIW Direct Ink Writing

DMB Dimethoxybenzene

DMC Dimethyl carbonate

DME Dimethyl ether

DMF Dimethylformamide

DMSO Dimethylsulfoxide

DMTA Dynamic mechanical-thermal analysis
DOD Depth-of-discharge
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DOE Department of Energy

DOL Dioxolane

DP Dry process

DPA Destructive physical analysis

DPS Dipropylulfide

DRIFTS Diffuse reflectance FTIR spectra

DRS Disordered rock salt

DRX Disordered (rocksalt) transition metal oxides
DSC Differential scanning calorimetry

DST Dynamic stress test

DVA Differential voltage analysis

EA Ethyl acetate

EADL Electrochemical Analysis and Diagnostic Laboratory (at ANL)
EAM Electrochemically active molecules

EB Electron beam

EBSD Electron back-scattering diffraction

EC Ethylene carbonate

ECI Effective clusters interactions

ECP (DOE) Exascale Computing Project

ECS Electrochemical Society

EDAX Energy dispersive x-ray spectroscopy mapping
EDP Electron diffraction pattern

EDS Energy dispersive spectroscopy

EDV Electric Drive Vehicle

EDX Energy-dispersive x-ray (spectroscopy)
EDXRD Energy Dispersive X-ray Diffraction

EEI Electrode/electrolyte interface

EELS Electron energy loss spectroscopy

EERE Energy Efficiency and Renewable Energy (DOE Office)
EIA Energy Information Administration

EIC Energy Innovation Center

EIS Electrochemical impedance spectroscopy
EM Electro-mechanical

EMC Ethylmethyl carbonate

EO Ethylene oxide

EOCV End-of-relaxed charge voltage

EOD End of discharge

EOL End of life

EOS Equation of state

EP Ethylene Glycol Monopropyl Ether (solvent)
EPA Environmental Protection agency

EPDM Ethylene propylene diene terpolymer

EPR Electron paramagnetic resonance

EQCM Electrochemical quartz crystal microbalance
ESIF Energy Systems Integration Facility
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ETEM
ETFB
EV
EVI
EVSE
EXAFS
FA
FC
FCE
FCG
FCSE
FDES
FDM
FDMB
FEC
FEP
FF
FFT
FIB
FIBSEM
FOA
FRS
FSI
FSP
FTC
FTEG
FTIR
FY
GAP
GB
GBL
GC
GDOES
GEIS
GF
GFM
GGA
GHG
GITT
GNR
GO
GOS
GPC
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Electrostatic potential

Energy storage system

Environmental transmission electron microscopy
Ethyl 4,4,4-trifluorobutyrate

Electric vehicle

Electric Vehicle Initiative

Electric-vehicle supply equipment

Extended X-ray absorption fine structure
Fumed alumina

Fast-charge

First cycle efficiency

Full concentration-gradient

Fast-charged specific energy

Fluorinated Deep Eutectic Solvent

Fused Deposition Modeling

Fluorinated 1,4-dimethoxybutane

Fluoro ethylene carbonate

Fluorinated ethylene propylene

Force field

Fast Fourier-transform

Focused ion beam

Focused ion beam scanning electron microscopy
Federal opportunity anouncement

Filtered Rayleigh Scattering

(Lithium) bis(trifluoromethanesulfonyl)imide
Flame spray pyrolysis

Freeze tapecasting

Fluorinated tetraethylene glycol

Fourier transform infrared spectroscopy
Fiscal year

Gaussian Approximation Potential

Grain boundary

Gamma-butyrolactone

Gas chromatography

Glow discharge optical emission spectrometry
Galvanostatic electrochemical impedance spectroscopy
Glass fiber

Glass fiber mats

Generalized gradient approximation
Green-house gases

Galvanostatic intermittent titration

Graphene nanoribbons

Graphene oxide

Grain Orientation Spread

Gel permeation chromatography
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GPE Gel polymer electrolyte

GPR Gaussian Process Regression

GREET Greenhouse gas regulated energy and emissions and transpiration
GROD Grain Reference Orientation Deviation

GSE Glassy solid electrolyte

GTP Gibbs Thomson parameter

HA High Active (coating technology)

HAADF High-angle annular dark-field

HAWCS Hybrid Alternative Wet-Chemical Synthesis
HAXPES High energy x-ray photoelectron spectroscopy
HC Half charged

HCE High concentration electrolyte

HD Half discharged

HEBM High Energy Ball Mill

HER Hydrogen evolution reaction

HEV Hybrid electric vehicle

HEXRD High-energy XRD

HF Hydrofluoric acid

HFE Hydrocarbon vs. fluoroether

HGA Horizontally aligned anode

HMDS Hexamethyl-disiloxane (additive)

HOH Highly Ordered Hierarchical (electrodes)
HOLE Highly ordered laser-patterned electrode

HOPG Highly oriented pyrolytic graphite

HOR Hydrogen oxidation reaction

HPC Highly porous carbon

HPPC Hybrid pulse power characterization

HRSEM High resolution scanning electron microscopy
HRTEM High-resolution transmission electron microscopy
HR-TEM High-resolution transmission electron microscopy
HT High temperature

HVAC Heating, Ventilationg, and Air-Conditioning
HVS High voltage spinel

HXN Hard x-ray nanoprobe

IC lonic conductivity

ICE Internal combustion engine

ICESI International Coalition for Energy Storage and Innovation
ICEV Internal combustion engine vehicle

ICL Initial capacity loss

ICP Inductively coupled plasma

ID Internal diameter

IEA International Energy Agency

IEEE Institute of Electrical and Electronics Engineers
IES Interface engineered substrate

IFC Inorganic functional catalysts
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KMC
KOH
KPH
LAM
LAMMPS
LATP
LBNL
LBO
LC
LCA
LCB
LCF
LCO
LCOC
LCOE
LCV
LEDC
LEMC
LFP
LGPS
LHCE
LIB
LIBRA
LIC
LL
LLI
LLNL
LLS
LLTO
LLZ
LLZO
LLZTO
LMA
LMB
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Integrated Ketjen Black

Integrated Ketjen Black/Sulfur

Idaho National Laboratory

Isopropyl alcohol

Infra-red

Impedance spectroscopy

Inner-shell spectroscopy

Journal of the American Chemical Society
Jahn-Teller (distortion)

Potassium cyanide

Karl Fischer (titration)

Kinetic Monte Carlo (simulations)
Potassium hydroxide

Kinetic polarization hindrance

Loss of active materials

Large-scale atomic/molecular massively parallel simulator
Liz17Alo.17Ti1.83(POa4)3

Lawrence Berkeley National Laboratory
LisBO3

Liquid chromatography

Life cycle analysis

Lower confidence bound

Linear combination fitting

Lithium cobalt oxide

Levelized cost of charging

Levelized cost of electricity
Lower-cutoff voltage

Lithium ethylene dicarbonate

Lithium ethylene monocarbonate
Li-iron phosphate

Li10GeP2S12

Localized high concentration electrolyte
Lithium-ion battery

Lithium lon Battery Recycling Analysis
Lithium-ion conducting
Layered-layered

Loss of lithium inventory

Lawrence Livermore National Laboratory
Layered-layered spinel

(Li,La)TiOs

LizLazZr,012

Lithium lanthanum zirconate
Lis.7sLasZr1.7sTao 25012

Lithium metal anode

Lithium metal battery
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LMC Lithium methyl carbonate

LMD lithium metal deposition

LMNO Lithium manganese nickel oxide

LMNOF Li-Mn-Nb-O-F

LMO Lithium manganese oxide

LMRNMC Lithium- and manganese-rich nickel manganese cobalt oxide
LMTOF Li-Mn-Ti-O-F

LNCO Lithium-Nickel-Cobalt-Oxide

LNMMO LiNio.495sMno.495M00.0202

LNMO LiNiosMngs02

LNMTO LiNiosMn1.2Ti00304

LNO Lithium-nickel oxide

LNTMO Liz.25Nbo.15Tio.2Mno.402

LNTMOF Liz.15Nio.45Ti0.3M00.101.85F0.15

LOB Li-oxygen battery

LPS LisPS4

LPSBI Li7P2SgBroslos

LPSCI Lithium protected solid-state cathode interface
LSB Lithium sulfur batteries

LT Low-temperature

LTMO Lithium-rich transition metal oxide
LTMOF Liz2Tio2MngeO1.8Fo2

LTO Lithium titanate, LisTisO12

LUMO Lowest unoccupied molecular orbital
LYC LisYCls

LZO LaxZr.07

MALDI Matrix-assisted laser desorption/ionization
MAS Magic angle spinning

MATBOX Microstructure Analysis Toolbox

MC Monte Carlo (simulations)

MD Molecular dynamics

MERF Materials Engineering Research Facility
METS Muti-harmonic ElectroThermal Spectroscopy (sensor)
MG Metallic Glasses

MGF Mixed glass former

MIBC Methy! isobutyl carbinol

MIC Molecular ionic composites

MILP Mixed-integer linear programming

MIT Massachusetts Institute of Technology
ML Machine learning

MLPC Multi-Layer Pouch Cell

MOF Metal Organic Framework

MOH Metal hydroxide

MOS Mixed oxy-sulfide

MOSFET Metal-oxide—semiconductor field-effect transistor
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MOSN
MOSS
MPC
MPO
MRS
MS
MSD
MSMD
MST
MSU
MW
NASICON
NAVSEA
NCA
NCM
NCMAM
NDI
NEB
NECST
NETL
NFA
NG
NHTSA
NIB
NLP
NMA
NMC
NMP
NMR
NMT
NN
NND
NNN
NNT
NO
NOMAD
NP
NPC
NPDF
NPV
NR
NREL
NSLSII
ocv
OE
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Mixed oxy-sulfide-nitride

Multibeam optical stress sensor
Mesoporous carbon

Mn2P,07

Materials Research Society

Molecular spectroscopy

Mean square displacements
Multi-scale, multi-domain

Mass spectrometry titration

Michigan State University

Microwave (irradiation)

(Na) Super lonic CONductor

Naval Sea Systems Command
LiNio.sC00.15Al0.050
Liz+w[NixCoyMn;]1.4O2
LiNio.85C00.0sMno.075Al0.02MJ0.00502
Naphthalene diimide

Nudged elastic band (method)
Nanomaterials for Energy Conversion and Storage Technology
National Energy Technology Laboratory
LiNixFeyAl,O,

Next-generation

National Highway Transportation Safety Administration
Sodium (Na)-ion battery

Natural language processing
Nickel-manganese-aluminum

Nickel manganese cobalt (oxide)
N-methylpyrrolidone

Nuclear magnetic resonance
TiMg-doped LiNiO>

Nearest neighbor (model)

Nearest neighbor distance

Next-nearest neighbor (configuration)
Sodium nonatitanate

Native oxide (layer)
Nanoscaled-Ordered Materials Diffractometer
Nanoparticles

Net present cost

Neutron pair distribution function

Net present value

Neutron reflectometry

National Renewable Energy Laboratory
National Synchrotron Light Source |1
Open circuit voltage

Organic electrolyte
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OEM Original equipment manufacturer

OEMS Online electrochemical Mass Spectrometry
OER Oxygen evolution reactions

OES Optical Emission Spectroscopy

OIM Organic insertion material

oL Overlithiation

OPLS Optimized Potentials for Liquid Simulations
ORNL Oak Ridge National Laboratory

ORR Oxygen reduction reaction

OTE 1H,1H,5H-Octafluoropentyl 1,1,2,2-Tetrafluoroethyl ether
PAA Polyacrylic acid

PAS Paired anti-site (defect)

PAW Projected augmented wave

PBDT Poly-2,2"-disulfonyl-4,4"-benzidine terephthalamide (polymer)
PBE Perdew, Burke, and Ernzerholf (parameters)
PBI polybenzoimidazole

PC Propylene carbonate

PCM Phase change material

PDF Pair density function

PDMS Polydimethylsiloxane

PDOS Projected Density of States

PE Polyethylene

PECVD Plasma-enhanced chemical vapor deposition
PEEK Polyetheretherketone

PEG Polyethylene glycol

PEGDA Poly(ethylene glycol) diacrylate

PEGDMA Polyethylene glycol dimethacrylate

PEI poly ethylene imine

PEO Polyethyleneoxide

PES Prop-1-ene sultone

PETMP Pentaerythritol-tetrakis(3-mercaptopropionate)
PEV Plug-in electric vehicle

PFA Perfluoroalkoxy

PFPE Perfluoropolyether

PFY Partial fluorescence yield

PG PEO-based gel polymer

PHEV Plug-in hybrid electric vehicle

PI Principal investigator

PISE Polymer-in-salt electrolyte

PLD Pulsed laser deposition

PLIF Planar Laser Induced Fluorescence

PNNL Pacific Northwest National Laboratory
POSS Poly(acryloisobutyl polyhedral oligomeric silsesquioxane)
PPT Peak Power Test

PSD Particle size distribution
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PSO
PSSQ
PSU
PTA
PTF
PTFE
PTO
PV
PVB
PVD
PVDF
PVP
PYR
QC
RCP
RE
RF
RGA
RH
RIXS
RM
RMS
RP
RPC
RPM
RPT
RRDE
RS
RST
RT
RTD
RTIL
SAE
SAED
SAM
SAXS
SBIR
SBR
SCAN
SCD
SCP
SDS
SE
SEAD
SECM

Particle Swarm Optimization (algorithm)
Polysilsesquioxane

Pennsylvania State University
Polysulfide trapping agent
Post-Test Facility
Poly(tetrafluoroethylene) (cathode)
Pyrene-4,5,9,10-tetraone
Photovoltaic

Polyvinyl butyral

Physical vapor deposition
Poly(vinylidenefluoride)
Polyvinylpyrrolidone
Pyrrolidinium

Quality control

Restricted-charge protocol
Reference electrode
Radiofrequency

Reduced graphene oxide

Relative humidity

Resonant inelastic x-ray scattering
Redox mediator

Root mean square

Red phosphorous

Red phosphorus-carbon
Revolutions per minute

Reference performance test
Rotating ring disk electrode
Rocksalt

Reactive Spray Technology

Room temperature

Resistance thermal device

Room temperature ionic liquid
Society of Automotive Engineers
Selected area electrode diffraction
Self-assembled molecular (film)
Small angle X-Ray scattering
Small Business Innovation Research
Styrene-Butadiene rubber
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Strongly constrained and appropriately normed (density functional)

surface charge density

Sulfur containing polymer

Safety data sheet

Solid electrolyte

Selected area electrode diffraction
Scanning electrochemical microscope
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SEI Solid electrolyte interphase
SEISTA Silicon electrolyte interface stabilization
SEM Scanning electron microscopy
SEO Polystyrene-b-poly(ethylene oxide)
SEQS Poly(styrene)-b-poly(ethylene oxide)-b-poly(styrene)
SETO Solar Energy Technologies Office
SGML Standard Generalized Markup Language
SHE Self-healing elastomer
SIA Structurally isomorphous alloy
SIC Single-ion conducting (block copolymer electrolyte)
SIE Solvation-ion-exchange
SIG Solvate ionogel
SIL Solvated ionic liquid (electrolyte)
SIMS Secondary ion mass spectrometry
SLAC Stanford acceleration laboratory
SLG Single layer graphene
SLP Single-layer pouch
SLPC Single layer pouch cell
SLS Sacrificial lithium source
SMPS Scanning mobility particle sizing
SNL Sandia National Laboratories
SNS Spallation Neutron Source
SOA State of the art
SOC State of charge
SOH State of health (for battery)
SOTA State-of-the-art
SP Spray pyrolysis
SPAN Sulfurized polyacrylonitrile (electrode)
SPC Solid permeability coefficient
SPE Solid polymer electrolyte
SPM Scanning probe microscope
SPN Secondary pore network
SQL Structured Query Language
SR Surface reconstruction
SRE Sigmoidal rate expression
SRL Surface reconstruction layer
SRO Short-range order
SS Solid-state
SSB Solid-state battery
SSE Solid-state electrolyte
SSRM Solvent-separated ion pair
STEM Scanning transmission electron microscopy
STFSI 4-styrenesulfonyl(trifluoromethylsulfonyl)imide
STTR Small Business Technology Transfer Program
SUNY State University of New York
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SWCNT Single-walled carbon nanotube

SXAS Soft x-ray absorption

SXRD Surface X-ray diffraction

TAC Technical Advisory Committee

TAMU Texas A&M University

TAP Technology assessment program

TARDEC (U.S. Army) Tank Automotive Research, Development and Engineering Center
TC Tape-cast (electrode)

TCD Thermal conductivity detector

TCP Technology Collaboration Program

TD Transverse direction

TDOS Total density of states

TEGDME Tetraethyleneglycoldimethyl

TEGMA Triethylene glycol methyl ether methacrylate
TEM Transmission electron microscopy

TEMPO (2,2,6,6-tetramethylpiperidin-1-yl) oxidany!l
TEP Triethyl phosphate

TES Tender-energy x-ray absorption spectroscopy
TEY Total electron yield

TFC Thin film constructs

TFEB Fluorinated borate

TFEO Fluorinated orthoformate

TFPC 3,3,3-Trifluoropropylene carbonate

TFSI Bistriflimide (anion)

TGA Thermal gravimetric analysis

THF Tetrahydrofuran

™ Transition metal

TMB Trimethylboroxine

TMO Transition metal oxide

TMP Trimethyl phosphate

TMSF Trimethylsilyl fluoride

™Y Typical meteorological year

TNMO TiNbMoO7 s

TNO Titanium niobium oxide

TNWO TiNbWO75

TOF Time-of-flight

TRL Technology readiness level

TTE 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether
TTFP Tris(2,2,2,-trifluoroethyl)phosphite

TVR Taylor Vortex Reactor

TXM Transmission X-ray microscopy

UAH University of Alabama in Huntsville

UCL University College, London

UCsD University of California, San Diego

ucv Upper cutoff voltage
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UHV
ulucC
UM
UMD
URDB
USABC
USANS
USCAR
USDRIVE
USEPA
USPTO
UTA
UTK
uu

uv

uw
VASP
VC
VDW
VGGT
VOC
VTO
WAXS
WL
WPI
WT
XAFS
XANES
XAS
XCEL
XFC
XFM
XML
XPD
XPEEM
XPEO
XPS
XRD
XRF
XRR
XRS
YSZ
ZEP

Ultra-high vacuum

University of Illinois, Urbana Champaign
University of Michigan

University of Maryland

Utility Rate Database

United States Advanced Battery Consortium
Ultra-small angle neutron scattering

United States Council for Automotive Research
Driving Research and Innovation for Vehicle efficiency and Energy sustainability
United States Environmental Protection Agency
United States Patent and Trademark Office
University of Texas, Austin

University of Tennessee, Knoxville
University of Utah

Ultraviolet

University of Washington

Vienna ab initio Simulation Package
Vinylene carbonate

Van De Waals (scan)

Vapor grown graphite tube

Volatile organic compounds

Vehicle Technologies Office

Wide-angle X-ray scattering

White line (energy)

Worcester Polytechnic Institute

Wavelet transform

X-ray absorption fine structure

X-ray absorption near edge structure

X-ray absorption spectroscopy

EXtreme Fast Charge Cell Evaluation of Lithium-ion Batteries
Extreme fast charging

X-ray fluorescence microscopy

Extensible Markup Language

X-ray powder diffraction

X-ray photoemission electron microscopy
Cross-linked poly ethylene oxide

X-ray photoelectron spectroscopy

X-ray diffraction

X-ray fluorescence (microscopy)

X-ray reflectivity

X-ray Raman Spectroscopy

Yttria stabilized zirconia

Zone Entity Probability
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Executive Summary

Introduction

The Vehicle Technologies Office (VTO) of the Department of Energy (DOE) conducts research and
development (R&D) on advanced transportation technologies that would reduce the nation’s use of imported
oil and would also lead to reductions in harmful emissions. Technologies supported by VTO include electric
drive components such as advanced energy storage devices (primarily batteries), power electronics and electric
drive motors, advanced structural materials, energy efficient mobility systems, advanced combustion engines,
and fuels. VTO is focused on funding early-stage high-reward/high-risk research to improve critical
components needed for more fuel efficient (and cleaner-operating) vehicles. One of the major VTO objectives
is to enable U.S. innovators to rapidly develop the next generation of technologies that achieve the cost, range,
and charging infrastructure necessary for the widespread adoption of plug-in electric vehicles (PEVs). An
important prerequisite for the electrification of the nation’s light duty transportation sector is development of
more cost-effective, longer lasting, and more abuse-tolerant PEV batteries. One of the ultimate goals of this
research, consistent with the current vehicle electrification trend, is an EV which can provide the full driving
performance, convenience, and price of an internal combustion engine (ICE) vehicle. To achieve this, VTO has
established the following overarching goal (Source: FY2021 Congressional Budget Justification?):

...identify new battery chemistry and cell technologies with the potential to reduce the cost of electric
vehicle battery packs by more than half, to less than $100/kWh (ultimate goal is $60/kWh battery cell
cost), increase range to 300 miles, and decrease charge time to 15 minutes or less by 2028.

VTO works with key U.S. automakers through the United States Council for Automotive Research (USCAR)
—an umbrella organization for collaborative research consisting of Fiat Chrysler Automobiles (FCA), the Ford
Motor Company, and General Motors. Collaboration with automakers through the partnership known as U.S.
Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability (U.S. DRIVE) attempts to
enhance the relevance and the success potential of its research portfolio. VTO competitively selects projects
for funding through funding opportunity announcements (FOASs). Directly-funded work at the national
laboratories are awarded competitively through a lab-call process. During the past year, VTO continued R&D
in support of PEVs. Stakeholders for VTO R&D include universities, national laboratories, other government
agencies and industry (including automakers, battery manufacturers, material suppliers, component developers,
private research firms, and small businesses).

This document summarizes the progress of VTO battery R&D projects supported during the fiscal year 2020
(FY 2020). InFY 2020, the DOE VTO battery R&D funding was approximately $110 million. Its R&D focus
was on the development of high-energy batteries for EVs as well as very high-power devices for hybrid
vehicles. The electrochemical energy storage roadmap (which can be found at the EERE Roadmap web page?)
describes ongoing and planned efforts to develop electrochemical storage technologies for EVs. To advance
battery technology, which can in turn improve market penetration of PEVS, the program investigates various
battery chemistries to overcome specific technical barriers, e.g., battery cost, performance, life (both the
calendar life and the cycle life), its tolerance to abusive conditions, and its recyclability/sustainability. VTO
R&D has had considerable success, lowering the cost of EV battery packs to $185/kWh in 2019 (representing
more than 80% reduction since 2008) yet even further cost reduction is necessary for EVs to achieve head-to-
head cost competitiveness with internal combustion engines (without Federal subsidies). In addition, today’s
batteries also need improvements in such areas as their ability to accept charging at a high rate, referred to as
extreme fast charging (XFC) (15 minute charge) — to provide a “refueling” convenience similar to ICEs, and

1 https://www.energy.gov/sites/default/files/2020/04/f73/doe-fy2021-budget-volume-3-part-1.pdf, Volume 3, Part 1,
Page 17.
2 http://energy.gov/eere/vehicles/downloads/us-drive-electrochemical-energy-storage-technical-team-roadmap.
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the ability to operate adequately at low temperatures. Research into “next-gen lithium-ion” batteries which
would provide such functionalities is one of the R&D focus areas. VTO is funding research on both “next gen”
chemistries (which employ an alloy anode and/or a high voltage cathode) and beyond lithium-ion (BLI)
chemistries (which can, for example, employ a lithium metal anode). Current cycle and calendar lives of next
gen and BLI chemistries are well short of goals set for EVs. To quantify the improvements needed to
accelerate large-scale adoption of PEVs and HEVs, certain performance and cost targets have been established.
Some sample performance and cost targets for EV batteries, both at cell level and at system (pack) level, are
shown in Table ES- 1.

Table ES- 1: Subset of EV Requirements for Batteries and Cells

Energy Storage Goals (by

" Pack Level Cell Level
characteristic)
Cost @ 100k units/year (kWh = $100/kWh* $75/kWh*
useable energy)
Peak specific discharge power 470 Wikg 700 W/kg
(30s)
Peak specific regen power (10s) 200 W/kg 300 W/kg
Useable specific energy (C/3) 235 Wh/kg" 350 Wh/kg"
Calendar life 15 years 15 years
Deep discharge cycle life 1000 cycles 1000 cycles
Low temperature performance >70% useable energy @C/3 >70% useable energy @C/3 discharge at
discharge at -20°C -20°C

“Current commercial cells and packs not meeting the goal

The batteries R&D effort includes multiple activities, ranging from focused fundamental materials research to
prototype battery cell development and testing. It includes, as mentioned above, R&D on “next-gen” and BLI
materials and cell components, as well as on synthesis and design, recycling, and cost reduction. Those
activities are organized into mainly two program elements:

e Advanced Battery and Cell R&D
e Advanced Materials R&D
A short overview of each of those program elements is given below.

Advanced Battery and Cell R&D

The Advanced Battery and Cell R&D activity focuses on the development of robust battery cells and modules
to significantly reduce battery cost, increase life, and improve performance. This work mainly spans the
following general areas:

e United States Advanced Battery Consortium (USABC)-supported battery development & materials R&D
(5 projects)

Processing science and engineering (13 projects)

Recycling and sustainability (five projects)

Extreme fast-charging (15 projects)

Beyond batteries (one project)
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o Testing and Analysis (seven projects)
e Small business innovative research (SBIR) (multiple Phase | and Phase Il projects)

Chapter | of this report describes projects under the Advanced Battery and Cell R&D activity. This effort
involves close partnership with the automotive industry, through a USABC cooperative agreement. In FY
2020, VTO supported five USABC cost-shared contracts with developers to further the development of
advanced automotive batteries and battery components. The estimated DOE share of those USABC contracts
(over the life of the contracts) is approximately $39M. These include high performance battery cells by Farasis
Energy, high-energy anode materials by NanoGraf Technologies, high-energy EV batteries by Zenlabs Energy,
low-cost fast charge battery technical assessment by Physical Sciences, Inc., and developing high-voltage
electrolyte by Gotion, Inc.

In addition to the USABC projects listed above, VTO also supports multiple processing science and
engineering projects: including 13 projects at the national labs. Most strategies for increasing the performance
(and reducing cost) of lithium-ion batteries focus on novel battery chemistries, material loading modifications,
and increasing electrode thickness. The latter approach is generally considered useful for increasing energy
density (and in turn, the overall cell capacity). However, practical thicknesses are constrained by ionic
transport limitations (which limit cell power) and processing issues. Project participants in this area include
several national labs (ANL, BNL, LBNL, LLNL, and ORNL). The estimated value of those advanced
processing projects (over project lifetime) is approximately $35M.

The Recycling and Sustainability activity involves studies of the full life-cycle impacts and costs of lithium-ion
battery production/use; cost assessments and impacts of various recycling technologies; and the available
material and cost impacts of recycling and secondary use. The participants include ANL, ORNL, and NREL
and the associated FY20 budget was approximately $6M.

To become truly competitive with the internal combustion engine vehicle (ICEV) refueling experience, EV
charging times must also be significantly shorter than at present. A research project to understand/enable
extreme fast charging (XFC) in enhanced lithium-ion systems — charging an EV at power rates of up to 400
kW, began in FY 2017.

Projects on numerous XFC topics are taking place at ANL, LBNL, ORNL, SNL, SLAC, the Pennsylvania
State University, the University of Tennessee, Stony Brook University, and at industry partner Microvast, Inc.
A lot of this R&D takes place under the heading eXtreme Fast Charge Cell Evaluation of Lithium-ionBatteries
(XCEL) by multi-lab coalitions comprised of members focusing on xix different “thrust” areas including
lithium detection thrust, local heterogeneity thrust, charge protocols and life assessment thrust, anode &
electrolyte thrust, lithium-ion battery cathode thrust, and the heat generation thrust. In addition, a “behind the
meter” storage project is taking place by a team which includes NREL, INL, ORNL, and SNL. This area
focuses on novel battery technologies to facilitate the integration of high-rate EV charging, solar power
generation technologies, and energy-efficient buildings while minimizing both cost and grid impacts.

The battery testing, analysis, and high-performance computing activity develops requirements and test
procedures for batteries (to evaluate battery performance, battery life and abuse tolerance). Battery
technologies are evaluated according to USABC-stipulated battery test procedures. Benchmark testing of an
emerging technology is performed to remain abreast of the latest industry developments. The battery testing
activity includes performance, life and safety testing, and thermal analysis and characterization. It currently
includes seven projects based at ANL, INL, SNL, and NREL. The testing activity also supports cell analysis,
modeling, and prototyping (CAMP) projects at ANL, which include benchmarking and post-test analysis of
lithium-ion battery materials at three labs (ANL, ORNL, and SNL). Projects include testing (for performance,
life and abuse tolerance) of cells (for contract, laboratory-developed and university-developed cells), and
benchmarking systems from industry; thermal analysis, thermal testing, and modeling; cost modeling; and
other battery use and life studies. Cost assessments and requirements analysis includes an ANL project on
developing the performance and cost model BatPaC. This rigorously peer-reviewed model developed at ANL
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is used to design automotive lithium-ion batteries to meet the specifications for a given vehicle, and estimate
its cost of manufacture. An analysis using BatPaC compared the estimated costs of cells and packs for different
electrode chemistries (Figure ES- 1).
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Figure ES- 1. Estimated costs of cells in automotive battery packs with different combination of electrodes. The packs are
rated for 100 kWhTotal (85 kWhUseable), 300 kW, 315V, 168 cells, and produced at a plant volume of 100K packs/year

VTO also supports several small business innovation research (SBIR) contracts. These SBIR projects focus on
development of new battery materials and components and provide a source of new ideas and concepts. The
section on SBIR projects includes a short list of recent Phase | and Phase Il projects awarded during FY 2020.

Advanced Materials R&D

The Advanced materials research & development activity addresses fundamental issues of materials and
electrochemical interactions associated with rechargeable automotive batteries. It develops new/promising
materials and makes use of advanced material models to discover them, utilizing scientific diagnostic tools and
techniques to gain insight into their failure modes and processes. It is conducted by various national labs,
universities, and industry partners. The work is divided into two general areas —next gen” chemistries (which
can, for example, employ an alloy anode and/or a high voltage cathode) and beyond lithium-ion (BL1I)
chemistries (which can, for example, employ a lithium metal anode). The projects are distributed as follows:

o Next generation (next-gen) lithium-ion battery technologies (39 projects)
o Advanced anodes (seven projects)

Advanced cathodes (six projects)

Frontier science at interfaces (seven projects)

No-cobalt/Low-cobalt cathodes (seven projects)

Diagnostics (six projects)
o Modeling of advanced material (six projects)

e Beyond lithium-ion battery technologies (24 projects)
o Metallic lithium (eight projects)

Solid-state batteries (18 projects)

Lithium sulfur (six projects)

Lithium-air Batteries (three projects)
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O
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o Sodium-ion batteries (four projects)
o Battery500 Consortium (five keystone projects and multiple seedling projects)

The next generation lithium-ion battery R&D area’s goal is to advance material performances, designs, and
processes to significantly improve performance and reduce the cost of lithium-ion batteries using an alloy or
intermetallic anode and/or high voltage cathode. Specific areas of investigation include high-energy anodes
(e.g., those containing silicon or tin), high voltage cathodes, high voltage and non-flammable electrolytes,
novel processing technologies, high-energy and low-cost electrode designs, and certain other areas. This work
spans a range of U.S. DRIVE activities.

Advanced anodes R&D includes seven multi-lab collaborative projects. In the first project, a team
consisting of ANL, LBNL, ORNL, SNL, and NREL provides research facility support for the next-
generation lithium-ion anodes. The second collaborative project (NREL, ANL, ORNL, LBNL) is the
silicon electrolyte interface stabilization (SEISta) project which develops a foundational understanding
of the formation/evolution of the solid electrolyte interphase on silicon. Silicon is a viable alternative to
graphitic carbon as an electrode in lithium-ion cells and can theoretically store >3,500 mAh/g (i.e., about
ten times more than graphite). However, lifetime problems severely limit its use in practical systems —
this project is focused on those problems. Five additional projects are taking place in the advanced
anodes area including two at LBNL, and one each at PNNL, SLAC, and the University of Michigan.
Advanced cathodes R&D includes six projects. A team consisting of ANL, LBNL, and PNNL is working
on the design, synthesis, and characterization of advanced cathodes. Two collaborative projects on
diagnostic testing and evaluation, including its theory and modeling, are being conducted by a team
consisting of ANL, LBNL, ORNL, and NREL. Also, ANL is working on the design and synthesis of
high energy, manganese rich oxides for lithium-ion batteries. In addition, there are two projects being
conducted on disordered rocksalt structured cathode materials by a team which includes LBNL, ORNL,
PNNL, as well as team member University of California at Santa Barbara.

Frontier science at interfaces R&D includes seven projects. In one of them, SLAC is developing a
molecular-level understanding of cathode-electrolyte interfaces and in another, ANL is working on
developing an understanding of the stability of cathode/electrolyte interfaces in high voltage lithium-ion
batteries. In another, LBNL is carrying out interfacial studies of emerging cathode materials. Additional
interface projects are taking place at ANL, NREL, PNNL, and Daikin America.

Low-cobalt/no cobalt cathodes R&D includes seven industry/academia-based projects. A team headed
by Cabot is developing aerosol manufacturing technology for the production of low-cobalt lithium-ion
battery cathodes. A UCSD project focuses on novel architectures for cobalt-free cathode materials and
another at ORNL on novel lithium iron and aluminum nickelate (NFA). The University of California at
Irvine is attempting to enhance the oxygen stability in low-cobalt layered oxide cathode materials by
three-dimensional targeted doping and the University of Texas at Austin on developing high-nickel
cathode materials for lithium-ion batteries (leading to indirect reduction of its cobalt content). In
addition, Nexceris and Pennsylvania State University are also is working on cobalt-free/low-cobalt
projects.

Diagnostics R&D includes six projects ranging from interfacial processes to in situ diagnostic techniques
and advanced microscopy, thermal diagnostics, and synthesis and characterization. The various
researchers for these projects are based at LBNL, BNL, PNNL, and, GM.

Of the six modeling of advanced electrode materials projects, one focuses on electrode materials design
and failure prediction (ANL), one on the characterization and modeling of li-metal batteries: model-
system synthesis and advanced characterization (LBNL), two on first-principles modeling (LBNL), one
on large-scale ab initio molecular dynamics simulation of liquid and solid electrolytes (LBNL), and one
on dendrite growth morphology modeling in electrolytes (MSU).

There are three projects on low-temperature electrolytes, including one each on ethylene carbonate-lean
electrolytes (LBNL), fluorinated solvent-based electrolytes (ANL), and synthesis, screening and
characterization of low temperature electrolyte (BNL).
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R&D on beyond lithium-ion battery technologies, often collectively referred to as the Beyond Li-ion Battery
Materials Research (BMR) program includes lithium metal systems, solid-state batteries, lithium sulfur,
lithium air, and sodium-ion. These systems offer further increases in energy and potentially reduced cost
compared to the next-gen lithium-ion batteries. However, they also require additional breakthroughs in
materials (often at a fundamental level) before commercial use is feasible.

o Metallic lithium R&D includes seven projects in cluding one in which ORNL is working on composite
electrolytes to stabilize metallic lithium anodes. Of the remaining projects, two focus on dendrite
suppression one on controlled interfacial phenomena (Texas A&M University, Purdue University), one
on integrated multiscale model for design (LLNL), one on 3D printing (LLNL), and one on advanced
polymer materials (SLAC).

o Solid state batteries R&D currently includes 18 projects — four of which are based at three national labs
(ANL, LBNL, and ORNL), ten of them at nine universities (University of Maryland-College Park, lowa
State University, University of Michigan, Virginia Polytechnic Institute, Pennsylvania State University,
University of Wisconsin-Milwaukee, University of Houston, Virginia Commonwealth University, and
University of Louisville) and four of them at three industry partners (Solid Power, Inc., General Motors,
and Wildcat Discovery Technologies).

o Lithium sulfur R&D includes six projects — four of them based at national laboratories and the remaining
two at universities. The lab-based projects include one on lithium-selenium and selenium-sulfur couple
(ANL), the development of high energy lithium sulfur batteries (PNNL), nanostructured design of sulfur
cathodes (SLAC), and a new electrode binder (LBNL). The two universities for lithium sulfur projects
include the University of Wisconsin at Milwaukee, and the University of Washington.

o Additional beyond lithium-ion projects include three on Lithium-Air batteries (one at PNNL and two at
ANL) and four on sodium-ion batteries (based at ANL, BNL, LBNL, and PNNL).

The Battery500 Innovation Center is a combined effort by a team of four national labs (PNNL, INL, BNL and
SLAC) and five universities (University of Texas-Austin, Stanford University, Binghamton University,
University of Washington, and University of California, San Diego) with the goal to develop commercially
viable lithium battery technologies with a cell level specific energy of 500 Wh/kg while simultaneously
achieving 1,000 deep-discharge cycles. The consortium keystone projects focus on innovative electrode and
cell designs that enable maximizing the capacity from advanced electrode materials. The consortium works
closely with the R&D community, battery/materials manufacturers and end-users/OEMSs to ensure that these
technologies align well with industry needs and can be transitioned to production.

Recent Highlights

Developed Li-lon Cell Brings 10-Minute Fast Charging Closer to Reality for Electric Vehicles. The
convenience of quickly refilling a car is a major advantage that still exists for gasoline vehicles compared to
fully electric alternatives. While fast charging EVs presents challenges to electricity grids and charging
stations, perhaps the most difficult hurdles to overcome are from the Li-ion battery cell itself. During fast
charge the high currents typically cause higher temperatures and uneven chemical reaction rates within the
cells. These operating conditions in turn lead to faster cell degradation. Especially unfortunate, these
degradations typically become more intense as the Li-ion cells energy density is increased.

One of the most straightforward ways to change a Li-ion cells performance and energy density is by using
different materials. Cell component material properties differ based on composition and physical attributes,
which in turn influences the cells performance. The cathode, the most expense cell component, is especially
important to improve. Higher capacity cathodes lead to more energy density, while improved properties slow
cell degradation and resistance increases. Using the full concentration gradient (FCG) cathode technology that
Microvast is developing for commercialization cathodes with tailored surfaces, more stable to fast charge
effects, were prepared. The FCG technology allows scientists and process engineers to change the atomic
composition of metals throughout the cathode particle, allowing more desirable metal oxide combinations to
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be targeted at locations most vulnerable to degradation. Also, as the nickel content of the prepared FCG was
increased the prototype cells C/3 energy density could be improved.

Initially a 200 Wh/kg cell was the highest energy density cell made by Microvast that could achieve the 500
10-minute charging goals. Steadily that number has improved as the cathode was developed, eventually
reaching 240 Wh/kg as the base (0.33C) energy density, a 20% improvement. In Figure ES- 2, the 10-minute
charging (6C), 1-hour discharge (1C) cycle data for prototype 240 Wh/kg cell is shown compared to the
project goals provided. Beyond 500 cycles the variance cell-to-cell does increase, but most cells achieve >
1,100 cycles before reaching end of life. These results, collected from automotive relevant 35 Ah pouch cells,
showecase that > 1,000 10-minute fast charges is feasible for cells built with advanced components such as
Microvast’s designer cathode and high thermal stability separator technology.
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Figure ES- 2. The energy density versus cycle number of tested 10-minute charge / 1-hour discharge Li-ion cells. The
project energy density goals, average for 6-duplicate cells and the best cell tested is shown.

Pushing the limit of rechargeable lithium metal batteries. The Battery500 Consortium pushes the frontier
of advanced electrode and electrolyte materials and develops strategies to integrate materials science,
electrochemistry, and cell engineering in high-energy rechargeable lithium metal batteries to achieve more
than 400 stable cycles in prototype 350 Wh/kg pouch cells (2 Ah) (Figure ES- 3 a-h).

To decelerate the continuous side reactions in lithium metal batteries and the consumption rate of both lean
electrolytes and thin lithium in realistic pouch cells, a localized concentrated electrolyte consisting of 1.54 M
lithium bis(fluorosulfonyl)imide (LiFSI) in 1,2-dimethoxyethane (DME) and 1,1,2,2-tetrafluoroethyl-2,2,3,3-
tetrafluoropropyl ether (TTE) has been developed to minimize the formation of “dead” lithium formed during
each cycle and improve the efficiency of Li deposition/stripping. The properties of solid electrolyte interphase
layers formed between the newly developed electrolyte and lithium metal are also improved, minimizing the
amount of electrolyte irreversibly consumed during every cycle.

To accelerate mass transport, high mass-loading cathode architectures with controlled porosities are coupled
with a modified lithium anode (Figure ES- 3c-d) to accelerate Li+ diffusion and reduce opportunities for spiky
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microstructures of lithium to form during cycling. The synthesis conditions and electrochemical properties of
high nickel manganese cobalt oxide cathodes are investigated to balance capacity and cycling stability.

A new, user-friendly software for designing lithium metal batteries has been developed to derive the key cell
parameters needed to achieve the desired cell-level gravimetric and volumetric energy densities. Standard
Battery500 coin cell testing protocols have been developed and implemented to compare and select the
materials or approaches developed within the Consortium and from collaborators. Advanced in situ and ex
situ characterization techniques—such as cryogenic electron microscopy and in situ X-ray diffraction—have
been used by the Consortium to monitor and quantify the chemical and structural changes of electrodes,
providing feedback on pouch-cell-level design.

New knowledge gathered from cell degradation mechanisms, as well as the combination of cell design,
compatible interfaces, and uniform initial pressure applied on the cell, synergistically extends the stable
cycling of 350 Wh/kg pouch cells with 80% capacity retention after 430 cycles.
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Figure ES- 3. 350 Wh/kg pouch cells achieve more than 400 cycles in research from the Battery500 Consortium. (a) Cell-
level energy and capacity at different cycling. (b) Image of a 350 Wh/kg lithium metal pouch cell developed at PNNL. (c)
Structure of a LiNi0.6Mn0.2C00.202 cathode coated on both sides of aluminum current collector. (d) One of the lithium

anodes incorporated in the pouch cell.

Scalable synthesis of high-performance single crystalline nickel-rich cathode materials for high-energy
batteries. Ni-rich cathode is one of the most promising materials for next-generation, high-energy Li-ion
batteries, but it suffers from moisture sensitivity, side reactions, and gas generation during cycling. A single
crystalline, Ni-rich cathode may address the challenges present in its polycrystalline counterpart by reducing
phase boundaries and materials surfaces; however, synthesis of electrochemically active Ni-rich single
crystalline cathodes is challenging. Ni-rich cathodes require lower synthesis temperatures because of their
structural instability at high temperatures, opposite to the high-temperature and time-consuming calcination
process needed to grow single crystals.

Researchers at PNNL recently identified a cost-effective synthesis route to prepare high-performance single
crystalline LiNi0.76Mn0.14C00.102 (NMC76). Figure ES- 4 displays the cycling stability of NMC76 (Figure
ES- 4 A-C) at different cutoff voltages. All material evaluations were conducted using high mass-loading (>
20 mg/cm2) single crystals in full coin cells with graphite as the anode, which is relevant for industry
application. Between 2.7 and 4.2 V (vs. graphite), single crystalline NMC76 delivers 182.3 mAh/g discharge
capacity at 0.1 C and retains 86.5% of its original capacity after 200 cycles (Figure ES- 4 A). Increasing the
cutoff voltage improves the usable capacity, but cell degradation is faster (Figure ES- 4 B-C).

Figure ES- 4 D-F compares the corresponding morphologies of single crystals cycled at different cutoff
voltages. If charged to 4.2V (Figure ES- 4 D), the entire single crystal is well maintained. Increasing the cutoff
voltage to 4.3 V results in some visible gliding lines on the crystal surfaces (Figure ES- 4 E). When cut off at
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4.4V, single crystals are “sliced” (Figure ES- 4 F) in parallel. Small cracks were also discovered cycled
between 2.7 and 4.4 V. Although single crystalline NMC76 as an entire particle is still intact (Figure ES- 4 D—
F) even at high cutoff voltages, gliding is the major mechanical degradation mode. PNNL researchers have
identified a critical crystal size of 3.5 um, below which gliding and microcracking will not occur, providing

clues to further improve single crystal performances in the future. This work has recently been published in
Science (December 10, 2020).
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Collaborative Activities

In addition to the above, VTO has in place extensive and comprehensive ongoing coordination efforts in
energy storage R&D across all of DOE and with other government agencies. It coordinates efforts on energy
storage R&D with both the Office of Science and the Office of Electricity. Coordination and collaboration
efforts also include program reviews and technical meetings sponsored by other government agencies and
inviting participation of representatives from other government agencies to contract and program reviews of
DOE-sponsored efforts. DOE coordinates such activities with the Army’s Advanced Vehicle Power
Technology Alliance, the Department of Transportation/National Highway Traffic Safety Administration
(DOT/NHTSA), the Environmental Protection Agency (EPA), and the United Nations Working Group on
Battery Shipment Requirements. Additional international collaboration occurs through the International
Energy Agency’s (IEA’s) Hybrid Electric Vehicles Technology Collaboration Program (HEV TCP); and
bilateral agreements between the U.S. and China. The U.S. China Clean Energy Research Center conducts
collaborative research both on rechargeable lithium-ion and beyond lithium-ion battery technologies to help
develop the next generation of advanced batteries to help expand electrification of vehicles and enable smart
grids internationally and its main objective is to understand and develop advanced battery chemistries based on
lithium-ion and beyond lithium ion that meet 300Wh/kg energy density.

Organization of this Report

This report covers all the FY 2020 projects as part of the advanced battery R&D (i.e., energy storage R&D)
effort in VTO. We are pleased with the progress made during the year and look forward to continued
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cooperation with our industrial, government, and scientific partners to overcome the remaining challenges to
delivering advanced energy storage systems for vehicle applications.

David Howell, Steven Boyd, Program Manager, Tien Q. Duong, Vehicle
VTO Deputy Director B&E Program Technologies Office
Vehicle Technologies Office Vehicle Technologies Office

Peter W. Faguy, Vehicle Brian Cunningham, Vehicle Samm Gillard, Vehicle
Technologies Office Technologies Office Technologies Office

Mallory Clites, Vehicle Haiyan Croft, Vehicle Simon Thompson, Vehicle
Technologies Office Technologies Office Technologies Office
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Figure 11.4.D.10 Comparison of cycling performance of Gr|[NMT and Gr||[NMC811 coin cells with AE003 and
E268 at C/3 cycling rate in the voltage range of 2.5-4.4 V. (a) Discharge capacity, and (b) specific energy..911

Figure 11.4.D.11 Comparison of cycling performance of Gr||[NMT and Gr||[NMC811 coin cells with new LHCE
and E268 at C/3 charge and 1C discharge in the voltage range of 2.5-4.4 V. (a) Average specific discharge
capacity and (b) average Specific diSCharge ENEIGY. .......cccciiiiiriieiie e e 911

Figure 11.4.D.12 Discharge rate test at RT for cells with (a) baseline and (b) AE-003 electrolyte. Charge rate
test at RT for cells with (c) baseline and (d) AE-003 eleCtrolyte. .........ccoeveriiiieiciie e 912

Figure 11.4.D.13 Cycle life and discharge voltage profiles of NMC811|Gr cells filled with AE-003 LHCE
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Figure 11.4.D.14 (a) XRD of the precursor from scaled-up (100 g/batch) and small batch (9 g/batch). (b)
Comparison of the NMT cathodes from scaled-up and small batch in Li||[NMT coin cell with baseline

electrolyte in the voltage range Of 2.5-4.4 V......c..oiii it 914
Figure 11.4.E.1 Performance of NCMAM-85 in 2 Ah pouch-cell format at (left) 25°C and (right) 40°C, cycled
at Tesla. Inc. between a voltage window of 2510 4.2V at C/2 rate. ....ccccceivieeviviieeccc e 918

Figure 11.4.E.2 Capacities of 2 Ah cells cycling at INL at C/3 rate between 2.5 and 4.25 V. Capacities were
measured during Reference Performance Tests (RPTs) conducted every 100 cycles with cycle life testing
(CycLT) cells. For calendar life testing (CalLT) cells, RPTs were performed every 32 days..........ccccccevevnnee. 918

Figure 11.4.E.3 Cycling performance of LiNiO, with various levels of Mg and Cu incorporation in pouch-type
full-cells paired against a graphite anode, cycled between 2.5 and 4.3 V at C/2 rate. Evolution of (a) cathode
level specific energy, (b) average discharge voltage, (c) energy efficiency, and (d) coulombic efficiency. ....919

Figure 11.4.E.4 (a) Cycling performance of NMA at various levels of porosity as obtained through calendaring,
evaluated in coin-type full cells paired against graphite anode cycled between 2.5 and 4.3 V. Formation cycles
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image of NMA calendared to 35% porosity. Image is focused on the boundary between two secondary
particles. The inset shows the zoomed-out image of the two particles, with the red box highlighting the
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Figure 11.4.E.5 (Left) Pouch cell cycling performance of various LiNio.goMxNyO2 (where M = Mn or Mg, C =
Co, and A = Al and x, y < 0.05) with 90% Ni and commercial NMC-622 at 2.5 — 4.2 V; active material
loading: 2.0 mAh cm?; single stack). (Right) Corresponding DSC curves for cathode materials displayed in
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Figure 11.4.E.6 (a) Long-term cycling performance of LiNiO; synthesized under various oxygen pressures (1.0,
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Figure 11.4.F.2 2-Ah PPC cycle life performance comparing LNMTO cathodes with and without electrode
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Figure 11.7.C.7 Predictions of ionic conductivity (a), self-diffusion coefficients (b) and the Li+ coordination
numbers (c) from MD simulations using polarizable APPLE&P force field and experiments.1,2 NDIS denotes
neutron diffraction with isotopic substitution eXperiments. [1] .......ccccererierierrerenie e 1046

Figure 11.8.A.1 (a) a free-standing interconnected composite film made of LICGCTM ceramic and crosslinked
polymer electrolyte (TC composite). (b) a cross-sectional SEM image of the film. Note the presence of thin
layers of polymer protecting both surfaces of the ceramic. (c,d) pictures of the composite electrolyte film after
being in contact with Li. (c), the part where there was no surface polymer layer turned black; (d) with the
surface polymer layer, no sign of ceramic reacting with Li was observed. (e-g) Li symmetrical cell cycling
using the interconnected composite film: (e) cycling at 80 °C with very little plasticizer was in the film; (f)
cycling at 70 °C with the polymer phase containing 50:50 TEGDME plasticizer/polymer by weight; (g)
impedance spectra of the cell in (b) before cycling and after 5 cycles. ... 1050

Figure 11.8.A.2 (a) Chemical structure of polymer electrolytes synthesized in this work, (b) intrinsic
conductivity of the polymer phase in the composite electrolytes as a function of inverse temperature, compared
to the measured conductivity of the polymer electrolytes without ceramic. (¢) Molar conductivity of single-ion
conducting-polymers with and without LICGC™ particles. (d) Symmetrical cell cycling of Li/Li cells with
composite and pristine XxPEGDMA with LiTFSI. (e, f), Fitting of the Raman spectra of the TFSI breathing
stretch for dry state (€) PEGDMA-co-STFSI, and (f) PEGDMA-co-STFSI with LICGC™ ceramic
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Figure 11.8.A.3 Charge capacity as a function of cycle number for Li (1/2) PE (5/8) LFP (1/2) (a), Li (1/2) PE
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Figure 11.8.A.4 Cycling of Li/LiFePO4 solid state cells with dry composite and polymer electrolytes. a, cells at
cycle 10 with different thicknesses of excess Li, 0-120 um; b, reduced polarization when thin PEO+salt fills
interface between the cathode and electrolyte composites; ¢, one of the longest cycling cells with Lipon at the
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Figure 11.8.B.1 (a,b) Variation of melting point (a) and ionic conductivity (b) of P(EO),LiFSI with EO:Li mole
ratio. (c) Temperature dependence of ionic conductivity and (d) electrochemical oxidation potential of
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Figure 11.8.B.2 (a) Temperature dependence of ionic conductivity Pyr14FSl-plasticized P(EO):LiFSI system.
(b) Cycling performance of Li||[NMC333 cells with P(EO);LiFSI-0.4Pyr14FSI at C/10 rate and 60 °C. ...... 1058

Figure 11.8.B.3 (a) Photo of in-situ polymerized nonflammable GPE. (b) Flammability test on the GPE. (c)
Voltage profiles of Li||Cu cells using the GPE during the CE evaluation. (d) Morphology of deposited Li using
the GPE, (e) First cycle charge-discharge voltage profiles of Li||[NMC622 cells using the GPE at C/10 rate 60
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Figure 11.8.B.5 (a,b) Simulation model of pure Li (a) and 4.5 wt.% Mg-doped L.i surface. Li, purple ball; Mg,
green ball. (¢c) Cycling performances of Li||[NMC811 cells and Li-Mg|[NMC811 cells with two Mg-doped Li
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Figure 11.8.B.6 (a-d) Low magnification TEM images of EDLi under current density of (a) 0.1 mA cm?, (b) 2
mA cm?, (c) 5 mA cm?and (b) 9 mA cm. Insets: Digital photos of deposited Li. (¢) Composition information
acquired from EDLI interface between Li and SEI, SEI and the surface of SEI areas at different current
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Figure 11.8.B.7 Cryo-TEM images of SEI formed on TEM Cu foil in the electrolytes without and with 5% VC
additive. (a-c) At different cut-off voltages of 1.0 V, 0.5V and 0 V in the electrolyte without VC additive. (d-f)
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Figure 11.8.F.1 Characterization of LLZTO pellets sintered at different temperatures. a) SEM cross-sections of
pellets made with pristine powder (top row) and powder ball milled in acetonitrile/Triton for 90 min (bottom
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guide the eye. Error bars on all plots represent the standard deviation for 3 samples. ...........ccccovcerrinreenn 1089

Figure 11.8.F.2 In situ USAXS/WAXS studies on the sintering behavior of LLZTO pellet pressed from ball
milled powders. a) Temperature profile (top), pore volume (middle), and pore diameter (bottom) evolution as a
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TBIMPEIATUIE. ..o e e e e e e s b e s b e s r e e sb e s r e sr e sr e sr e sre e nre e 1090

Figure 11.8.F.3 (a)Density of LLZTO-AI pellets with different ALD cycles of Al.O3 coating after sintering at
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exposed. Arrow indicates the black color formed after contact between lithium and LLZTO-1Al above the Li
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Infrared spectroscopy measurements for polymer networks with varying salt content. The shaded region at
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Figure 11.8.G.3 (a) 7Li chemical shift measured for different ionic polymer networks, showing a downfield
shift with increasing salt concentration. (b) Lithium diffusivity and transference number obtained from pulse
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interfacial resistances measured using impedance spectroscopy of symmetric lithium cells. In part a and b,

the solvent used was EC/DEC and in part c, d, the bulk liquid electrolyte utilized was 1M LiTFSI in
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Figure 11.8.G.4 (a) Comparison of coulombic efficiency measurements in Li||Cu configuration, where the
copper is coated with or without different ionic polymers and the bulk electrolyte utilized is 1M LiTFSI in
DME as well as 2M LiTFSI in DME. a) Comparison of lithium morphology on copper electrode after
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1.7mAh/cm? NMC532, such that the anode (N) to cathode capacity (P) ratio is 3:1. The lithium metal utilized
either bare or coated with the ionic polymer (1.5moles/kg of salts). The inset shows the comparison of the
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cycle. (d) Cycle life of the full cell upto 250 cycles. In part ¢ and d: the electrolyte utilized was 1M LiFSI in
FDMB and the volume was limited to 15pl/mAh. The lithium utilized was 50um thick coated with ~1 pm
thick layer ionic polymer (1.5 moles/kg of grafted salts). The cathode loading here is 2mAh/cm?. The
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Figure 11.9.G.1 Thin Film Construct and precision reference electrode manufacturing. (a) TFC consisting of 20
pm thick Li and 100 um thick LLZO. (b) 18 um tape cast and densified LLZO cast and polished in
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Figure 11.9.G.2 Manufacturing of TFC with desired microstructure and thickness. (a) Fracture surface of a
70um thick LLZO thin film, in comparison to the (b) fracture surface of a 1mm thick hot-pressed LLZO
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baseline-optimized MIC film with relative percentages of each component. (b) Photograph of MIC film with
improved uniformity and flexibility. (c) Temperature dependence of ionic conductivity of the MIC film. (d)
Separate diffusion coefficients of ionic liquid (IL) cation and anion in the film compared to the diffusion
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Figure 11.9.1.4 Tensile stress-strain curve for MIC electrolyte film at room temperature. The three curves
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electrolyte, suggesting they are caused by the IL. An oxidative peak at 3.9 V is evident only in the MIC
membrane, indicating it is caused by either the polymer or an iMmpurity. ........cccocvivviverenieniesieere e 1157
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Figure 11.9.P.1 (A) Calculated diffusivities of the newly developed argyrodite-alike solid electrolytes fitted by
the Arrhenius relation. The diffusivity of stoichiometric LisPSsCl (in black) is used as a benchmark for
comparison, with a poor room temperature (RT) ionic conductivity in the order of 107-10% S/cm and a high
activation energy between 5.0-6.0 eV. The new materials exhibit much (3 to 5 orders of magnitude) higher
room temperature (RT) diffusivity than that of LisPSsCI. The corresponding ionic conductivities at RT are over
10-102 S/cm with activation energies between 0.15-0.35 eV. (B) New electrolyte materials based on (C-
doped) boranes. All these show ultra-high RT ionic conductivities in the order of 10-100 mS/cm and extremely
low activation energy in the order of 0.05-0.1 eV. This is due to the dynamics and the multipolar moments of
the polyatomic units as well as fragments present in the STrUCTUIES...........cccvvveierieiienieere e 1214

Figure 11.9.P.2 (A) Calculated diffusivities of the newly-developed cluster-based solid electrolytes (SE) fitted
by the Arrhenius relationship. The corresponding ionic conductivities at RT are in the order of 10*-10 S/cm
with activation energies between 0.12-0.36 eV. Especially, the calculated RT conductivity of LizS(SCN)
reaches 0.079 S/cm with a low activation energy of 0.124 eV. (B) LisS(BsHs) only exhibits fast-ion conduction
at high simulation temperatures over 500 K, as shown by the calculated mean squared displacements (MSD)
for different atomic species in the structure (left panel) with partial melting (blue and green lines). At
simulation temperatures of 300 and 400 K, the material shows no superionic conductivity (right panel).....1215

Figure 11.9.Q.1 Thermodynamically stable crystal structure of halogenated argryrodites, namely (a) LigPSsCl,
(b) LisPSsF and (c) LisPSsFosClos obtained from density functional theory calculations. In all cases, the
backbone of the structure is composed of PS, tetrahedra (P and S are shown as blue and green spheres). The
lithium atoms (purple) occupy 24g or 48h crystallographic sites forming a cage-like arrangement around a
central S or X atom in a 4c site. Regardless of composition, halogen doping introduces site-disorder in sulfur
atoms that do not belong to the PS4 tetrahedra. Addition of CI/Br/I alone stabilizes S-X antisites; while F
prefers to occupy 24g or 48h sites on the surface of the Li-cage. Co-doping with both F and CI completely
disrupts one of the Li-cages causing disorder in lithium SIteS. .........ccocirerriirienines e 1219

Figure 11.9.Q.2 Ab initio molecular dynamics simulations to understand Li* ion transport in halogen doped
lithium argyrodites. (a) Li-ion conductivity as a function of temperature for three representative electrolytes,
namely, LigPSsF (red), LisPSsCl (blue), and LigPSsFosClos (green), (c) Room temperature Li-ion conductivity
as a function of F content in LisPSsFxCli«x obtained by extrapolating diffusivity-temperature trends down to
300 K, and (d) Spatial density distribution of Li ions in the AIMD trajectory show enhanced inter-cage
hopping for equimolar co-doped electrolyte as compared to the SSEs with single halogen dopant............... 1220

Figure 11.9.Q.3 Liquid phase synthesis of lithium argyrodites solid electrolytes optimized by AIMD
simulations. (a) Schematic representation of the solvent-based synthesis method. (b) XRD patterns of (a) F-
doped lithium argyrodites and (b) F-CI/Br/I co-doped lithium argyrodites, Arrhenius plots of (c) F-doped
lithium argyrodites and (d) F-CI/Br/l co-doped lithium argyrodites...........ccocvvvreinieniennneene e 1221

Figure 11.9.Q.4 Electrochemical stability of the Li-anode/SSE interface using AIMD simulations and Li
stripping/plating experiments on Li-symmetric cells. The equilibrated atomic structure of the interface between
Li (001) and SSE (001) derived from room-temperature AIMD simulations are shown for three different
electrolyte compositions, namely (a) LisPSsF, (b) LisPSsCl, and (c) LisPSsFo.sClos. The spatial distribution of
Li (purple), P (blue), S (green), F (red), and CI (grey) atoms (in terms of humber density) are also shown in the
direction normal to the interface. In panel d, experimentally measured cyclic performance of Li |SE | Li
symmetric cells using F/CI co-doped (LisPSsFosClos) and Lis PSsF as SEs, respectively. Current density is set
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Figure 11.9.Q.5 Partial distribution function of (a) Li-P, (b) Li-S, (c) Li-X, and (d) P-S pairs in equilibrated
structure of the anode/SSE interfaces obtained from AIMD simulations. The PDF for the three electrolyte
compositions LisPSsF, LisPSsCl and LisPSsFosClos are shown as red, blue and green lines respectively. The
PDFs are averaged OVEr the TaSE 3 PS. ...o.iviiiieieeee bbbt 1223

Figure 11.9.Q.6 Predictive power of the newly developed Q-BOP potential for Li-P-S system. Comparison of
the equation of state (EOS) between DFT and fitted Tersoff potential for (a) Li, (b) S, (c) Li-P, (d) LiS and (e)
Li-P-S systems. (f) errors in the prediction of Q-BOP for a variety of materials properties. The energies in
panels a-e are relative to the energy corresponding to equilibrium volume at a given level of theory........... 1224
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Figure 11.9.Q.7 Fabrication ans characterization of solid state lithium sulfur battery. (a) Capacity versus cycle
number of CNT-S (1:2) cathode electrode using SSE Li6PS5-CI-LiCl at 0.1 C rate test. (b) High resolution
XPS spectrum of sulfur at cathode/electrolyte interface taken from cathode and electrolyte surfaces, and (c)
SEM and EDS characterization of the electrolyte at the end of 100 CyCIES. ........cccovviiiiiiiiiiiiiic e 1225

Figure 11.9.R.1 The unit cell volume obtained from crystallographic data versus the state of lithiation of
POSItIVE electrode MALEITAIS.[5] ... i i v eieieri ettt sre e et nresne e e e 1230

Figure 11.9.R.2 Polyhedral representation of LiNiO; super cell at different lithium content (x) with oxygen
stacking in the H-2 (ABC) and H-3 (AC) phases. Grey octahedrons represent Ni sites, green octahedrons
represent Li sites, small red spheres represent OXYgEN @lOMS. .......ccveverierereeeereseseeseesesieseeee e seesseeseeseens 1230

Figure 11.9.R.3 Energy of the dissociated limit as a function of the interlayer spacing for PBE, SCAN and
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Figure 11.9.R.4 Polyhedral representation of LiNigsMno1C00.10; (a) transition metal layer top view, (b) whole
super-cell side view. Grey polyhedra represent Ni sites, blue polyhedral represent Co site, purple polyhedral
represent Mn sites and green spheres represent Li ions. (¢) Procedure to find minimal energy transition metal
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Figure 11.9.R.5 (a) Neural network predicted versus DFT predicted energies. Additionally, 1-sigma uncertainty
intervals are plotted for the neural network predictions. (b) Procedure to find minimal energy transition metal
configuration. (c) DFT calculated energies for 50 configurations (round 1) where transitions metals are
positioned randomly in the transition metal layers and energies after Bayesian optimization (round 2). (d)
Transition metal layer top view polyhedral representation of LiNigsMno.1C00.102. Grey polyhedra represent Ni
sites, blue polyhedral represent Co site, purple polyhedral represent Mn sites and green spheres represent Li
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Figure 11.10.A.1 Morphology and composition characterizations of cathode materials. (a) TEM image of CSH
host material. (b, ¢) TEM image of CSH/S-Se cathode material and corresponding EDS mapping of N, S, Co,
and Se. (d) TGA curve of CSH/S-Se-10% cathode. (e) XRD patterns of hollow ZIF, CSH, and CSH/S-Se-10%.
(f) High-resolution XPS spectra of S 2p for CSH/S-Se-10% and CSH/S cathode materials. (g) High-resolution
XPS spectrum of Se 3d of CSH/S-Se-10% cathode material. ... 1241

Figure 11.10.A.2 Electrochemical characterizations of various cathode materials. (a) Voltage profiles and (b)
cycle performance of CSH/S-Se-x% (x ranging from 0 to 20) cathode materials. (c) Cycling performance of
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Figure 11.10.A.3 Li stripping/plating in HFE-and DME-based electrolyte using Li|Cu and Li|Li cells. Li metal
plating/stripping profiles of Li|Cu cells in (a) HFE-based electrolyte and (b) DME-based electrolyte. (c)
Coulombic efficiencies of Li|Cu cells with HFE- and DME-based electrolytes. (d) Cycling performance of
Li|Li symmetric cells with the areal capacity of 1 mAh cm in HFE- and DME-based electrolytes under 1 mA
cm2. e) Cycling performance of Li|Li symmetric cell with the areal capacity of 4 mAh cm under 1 mAh ¢cm
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Figure 11.10.A.4 Morphology and interphase analysis of cycled Cu foil, Li metal anode, and Se-S cathode.
SEM images of cycled Cu foils of Li||Cu cells in (a) DME-based electrolyte and (b) HFE-based electrolyte. (c)
ToF-SIMS mapping (F- and Li-) of cycled Cu foils for Li|Cu cells in two electrolytes. (d) High-resolution XPS
F 1s spectra of cycled Li metal anode of Li|Cu cells in two electrolytes. SEM images of cycled Li metal anode
of Li/Se-S cells in (€) DME-based electrolyte and (f) HFE-based electrolyte. (g) ToF-SIMS mapping, and (h)
three-dimensional (3D) element reconstruction (S- and Se-) and (i) depth profile of cycled Li metal anode in
Li/Se-S cells with two electrolytes. (j) ToOF-SIMS elements mapping (S- and Se-) of cycled CSH/S-Se-10%
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Figure 11.10.B.4 (a) First and second charging/discharging curves and (b) cycling performance of dense S
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Figure 11.10.C.1 Supercooled liquid sulfur for Li-S batteries. (A) In situ optical observation of sulfur
evolution processes. (B) Design of three-dimensional (3D) electrodes for high-performance Li-S batteries.1254

Figure 11.10.C.2 In situ optical observation and electrochemical performance of the Ni foam and G/Ni foam
electrodes in lithium polysulfide electrolyte. Optical images of (A) Ni foam, (E) G/Ni foam. Optical images of
Ni foam in lithium polysulfide electrolyte (B) at initial state, (C) after charging to 3.0 V, and (D) discharging
to 1.5 V. Optical images of G/Ni foam in lithium polysulfide electrolyte (F) at initial state, (G) after charging
to 3.0 V, and (H) discharging to 1.5 V. Snapshots of the constant voltage charging process for Ni foam
electrode at (I) 60s, (J) 90s, (K) 120s, (L) 150s. Snapshots of the constant voltage charging process for G/Ni
foam electrode at (M) 60s, (N) 90s, (O) 120s, (P) 150s. (Q) Rate performance of the Ni foam and G/Ni foam
electrodes at different current densities. (R) Charge/discharge voltage profiles of the Ni foam (dash line) and
G/Ni foam (solid line) electrodes at 0.2C, 1C and 3C. (S) Cycling performance and Coulombic efficiency of
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Figure 11.10.C.3 Li>S decomposition and lithium ion diffusion barriers on the surface of nickel and
graphene. (A) Comparison of the Li>S decomposition and lithium ion diffusion barriers on the surface of
nickel, graphene basal plane, and graphene edge. Energy profiles for the decomposition of Li,S cluster and
lithium ion diffusion on the surface of (B) graphene edge, (C) graphene basal plane, and (D) nickel. Inset
figures are top view schematic representations of the corresponding decomposition and lithium ion diffusion
pathways for graphene edge, graphene basal plane, and nickel. Here, green, yellow, gray, and beige balls
symbolize lithium, sulfur, nickel, and carbon atoms, reSPeCtiVEIY. .......ccccovvcvviiireiiere e 1257

Figure 11.10.C.4 Advanced characterizations for understanding sulfur species in the liquid sulfur system.
(A) In situ Raman spectra of liquid and solid sulfur on molybdenum disulfide (MoS;) both show
intramolecular Raman modes of Sg and contain signatures of MoS;. In the low-frequency range, liquid sulfur

List of Figures cv



Batteries

shows a wing feature while solid sulfur shows distinct external modes. (B) In situ X-ray absorption
spectroscopy (XAS) spectra confirming the composition of liquid sulfur. When charged to 3 V, the absorption
feature at 2471 eV disappears, indicating the conversion of S, into elemental S (absorption feature at 2473
eV). (C) Cryogenic electron microscopy (cryo-EM) image and (D) selected area electron diffraction (SAED)
confirming the crystallinity Of SOl SUITUT. .........coooiiiii e 1258

Figure 11.10.C.5 Design of encapsulated Li,S cathodes for high energy density all-solid-state Li-S
batteries (ASSLSBs). (A) Schematic of the ASSLSBs architecture comprising of Li metal anode, nanoporous
polyimide (PI) film filled with polyethylene oxide/lithium bis(trifluoromethanesulfonyl)imide
(PI@PEO/LITFSI) solid electrolyte, and Li.S composite cathode. Zoomed-in schemes of the red rectangle in
(B), to depict the interface between solid-state electrolyte and cathode during delithiation process for (B) bare
Li,S cathode and (C) Li-S@TiS> cathode. Bare Li»S particles undergo polysulfide dissolution upon
delithiation, resulting in rapid capacity decay and low Coulombic efficiency. LioS@TiS> core-shell structure
provides a structurally intact shell for effective trapping polysulfides, thereby avoiding the polysulfide
dissolution into solid polymer electrolytes. Light yellow: Li,S particles; Orange: polysulfide; Grey shell: TiS;
coating. (D) SEM and (E) TEM image of Li;S@TiS,. The thickness of TiS; coating is about 20 nm. (F) High-
resolution TEM image Of TiS2 COALING. .....cccveiiriiiiiee e naenre s 1259

Figure 11.10.D.1 Chemical reaction between dissolved polysulfide ions and metallic Li (A) and prelithiated Sn
(S OSSOSO 1263

Figure 11.10.D.2 Rate and cycling performance of the pristine (a) and prelithiated (b) SnO2/C electrode. The 1%
(c) and 2™ (d) cycle voltage profiles for prelithiated SnO,/C electrodes with various prelithiation durations.
The capacities (e) , initial CE and DOPL (f) of the pristine and prelithiated SnO./C electrodes. The half cell
with the pristine SnO,/C started with lithiation, while the half cells with the prelithiated SnO,/C started with
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Figure 11.10.D.3 (a) Schematic illustration of the full cells consisting of LCO cathode and different SnO»/C
anodes, respectively. Voltage profiles (b), cycling performance (c) and coulombic efficiency (d) of the full
cells at 1C rate (1€ =140 MA g1 OF LCO).] cvoviuiiiieceeeeee ettt 1264

Figure 11.10.D.4 The electrochemical performance of polymeric sulfur compound made with monomer
(Dicyclopentadiene DCPC) shown in the inset (A)&(B). The polymer in (C)&(D) was synthesized
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Figure 11.10.D.6 Electrochemical performances for CP/Me-N-GOMC/S cathodes. (a) CV curves of the CP/Fe-
N-GOMC/S electrode for initial several cycles at a scan rate of 0.05 mV s*. (b) Galvanostatic discharge-
charge profiles of electrodes for the second cycle at 0.2 C. (c) Experimental Nyquist plots of electrodes after
initial cycle of the cells as well as the fitting results (solid lines) based on the equivalent circuit shown in the
inset. (d) Cycling performances of electrodes at 0.5 C and (e) rate capability of electrodes at various rates with
a sulfur loading of ~3 mg cm2. (f) Cycling performances of CP/Fe-N-GMOCI/S electrodes with different
sulfur loading at 1 C and (g) the corresponding areal CapaCities. ..........cocervecerererieriniene e 1266

Figure 11.10.E.1 (a) molecular structure of a class of synthesized fluorinated ether, denoted as FsEO., F4sEO,
and F3EO; respectively. Size information extracted from SAXS measurement for (b) 0.5M salts dissolved in
HFE/TTE 1:5 (v/v) as a function of salt and HFE additive identity. (b) Complex aggregate size as a function of
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Figure 11.10.E.2 voltage profile for FsEO./TTE 1:5 (v:v) ; comparison of (b) coulombic efficiency and (c)
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Figure 11.10.E.3 Voltage profiles for Li plating/stripping test at various conditions: (a) 0.5mA/cm? current rate
and 0.5mAh/cm? deposition capacity; (b) 1.0mA/cm? current rate and 1.0mAh/cm? deposition capacity (c) 2.0
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Figure 11.10.E.4 SEM of Algs/Cu-50 substrate for 1h lithium deposition with various current density (a) 0.05
mA/cm?; (b) 1 mA/cm?; (c) CE over 300 cycles of Li plating/stripping process at 0.05 mA/cm? current rate; (d)
Voltage profile for Li deposition at current density of 0.05 mA cm-2 as a function of substrates and deposition
1] 301 SO 1272

Figure 11.10.F.1 a) Molecular structure of SIG components with their abbreviated names. b) Cycling data (0.1
mA/cm?) for Li|Li symmetric cells with SIG separators, along with Li(G4)TFSl/glass fiber for comparison. All
cells completed 100 cycles (600 hrs) without developing short circuit. Cured SIG separators required less
overpotential (normalized to separator thickness) for Li stripping/plating than the solvate ionic liquid alone. c)
Photograph of a SIG/S/C cathode, where SIG is cured in situ within the pores of the electrode. d) Galvanostatic
cycling data (theoretical C/10 rate) for an all-solid-state Li-S cell containing SIG in both the cathode and
separator. Capacity retention (81%, 2nd — 75th cycle) and coulombic efficiency (~97%) are encouragingly
high even without anode passivating additives (i.6. LINO3).........ccoovvveririinieeriene e se e sie e 1278

Figure 11.10.F.2 a) Specific capacity (mAh/gsuirur) for Li-S cells of indicated cell structure [anode |electrolyte-
separator |binder/gel-cathode] during Galvanostatic cycling at C/10 (calculated based on 1672 mAh/Gsuiur
theoretical capacity). b) 3" cycle voltage profiles for indicated cells at C/10. c) 3" cycle voltage profiles for
indicated cells at C/20. d) Cycling of symmetric cells [electrolyte|separator |electrodes] at £0.1 mA/cm? using a
6h cycle period. e) Cycling of symmetric cells [electrolyte |[separator |electrodes] with varying current density
and cycle period. f) lonic/electrical conductivity vs temperature for gel cathodes and gel separators, extracted
from frequency-dependent impedance between stainless steel blocking electrodes...........ccccevevvvivviveierennn, 1279

Figure 11.10.F.3 GITT results for six different Li-S coin cell designs, with the cell structure indicated as Li |
electrolyte | cathode. All data was collected at 30°C and C/10 rate (assuming 1672 mAh/gs), with GITT being
performed on the 3" cycle. All cathodes have ~1 mgs/cm? areal loading. The blue and red curves connect the
current-applied voltages and open-circuit voltages, respectively, measured directly before current interruption
and after a 1hr rest, respectively. Their difference represents the cell overpotential at that point of
charge/discharge. The point of minimum overpotential during the lower discharge plateau of each cell is
labeled on the correSPONING GraPRS......cc.viveieie et sb e re e bestesre e e e e e 1280

Figure 11.10.F.4 a) Cycling performance of QSS and OE cells, with a 100h rest during 7" cycle discharge.
Some irreversible capacity loss is observed for both designs, but the OE cell exhibits accelerated redox
shuttling after the self-discharge test, while the QSS cell continues to cycle stably; b) OE voltage profiles for
the 61, 7, and 81 cycles; ¢) QSS voltage profiles for the 6™, 7, and 8™ cycles; d) Cycling performance of two
representative high-loading QSS cells. Available capacity is quite low at C/10 due to large internal resistance
in the thick cathodes; e) 2" and 10" voltage profiles for the representative high-loading cells. Increasing
resistance during discharge prevents the cells from accessing their lower plateau capacity, especially at

Figure 11.10.F.5 UV-Visible spectra of dbNDI/Py solutions of varying ratios (constant total concentration)
in dichloromethane, showing development of peaks in the visible region corresponding to complex
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Figure 11.10.F.6 Our novel polymeric materials form free-standing, self-healing films when mixed together in a
1:1 molar ratio of NDI to Py units. The self-healing temperature of these films can be adjusted over a wide
range by doping small molecule NDI or Py compounds into the film, forcing formation of either 1:1 or 2:1
NDI:Py complexes, which have vastly different binding energies. Addition of these small molecules can also
be used to “passivate” binding sites, adjusting the crosslinking density. ..........ccoceoerverereininienenniene s 1284

Figure 11.10.F.7 a) Self-healing efficiency based on maximum tensile strength and, b) recovery of Young’s
modulus upon self-healing of composite films after heat treatment at different temperatures. ¢) Nyquist plots
and curve fit of PP-1/Li(G4)TFSI at room temperature and recovery of PP-1/Li(G4)TFSI under 40 °C for

Figure 11.10.F.8 a) The discharge/charge voltage profiles of the MJ430-S and the 20% SH-MJ430-S electrodes
based on S loading of 1 mg cm-2 at initial activation cycle (0.05 C) and 10th cycle (0.25C). b) The
corresponding cycling performance within the first 300 cycles. ¢) The discharge/charge voltage profiles, and d)
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the corresponding cycling performance of the MJ430-S and the 20% SH-MJ430-S electrodes based on S
loading of 4 mg cm-2. ) The discharge/charge voltage profiles of the 20% SH-MJ430-S electrodes at various
rate. f) The discharge/charge voltage profiles of a series [SH]-MJ430 with increasing weight percentage of
thiol modifier, from 5% to 20%, controlled via reaction conditions. Thiol modification largely increases
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Figure 11.10.F.9 . a) 'Li MAS NMR spectra of the Li,Sg solution interacting with MJ430 and the 20% SH-
MJ430. b) 'Li MAS NMR spectra of the cathode materials with MJ430-S and 20% SH-MJ430-S from Li-S
cells that are discharged to different voltages, with experimental data in solid lines, deconvolution peaks in dot
lines, and the sum of deconvolution peaks in dash lines. High resolution S2p XPS spectra of c¢) the MJ430-S,
and d) the 20% SH-MJ430-S cathodes, obtained from Li-S cells discharged to 1.9 V after 100 cycles. EIS
analysis of (e-f) the MJ430-S and (g-h) the 20% SH-MJ430-S cells at different stages of discharge within 40
0370 LSS 1287

Figure 11.10.F.10 a) Self-healing efficiency based on maximum tensile strength at C/20 and, b) recovery of
Young’s modulus upon self-healing of composite films after heat treatment at different temperatures, c)
Nyquist plots and curve fit of PP-1/Li(G4)TFSI at room temperature and recovery of PP-1/Li(G4)TFSI under
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Figure 11.10.F.11 a) Visual test of the reaction/interaction between LiSg (1 mM) in DOL/DME (1;1, v:v) with
1 M LiTFSI. b) UV-vis spectra of solutions with various ratio of doNDI and Li>Sg in DOL/DME (1;1, v:v)
with 1 M LiTFSI. The concentration of dbNDI was kept constant as 0.1 mM in the mixture. ¢) CV spectra of
dbNDI (10 mM) and Li2Sg in DOL/DME (1,1, v:v) with 1 M LiTFSI (scan rate = 10 mV/s). d) Two-step
reductions of NDI moiety and illustration of ion-dipole interaction between NDI moiety and polysulfides. €)
Schematic illustration of redox-mediator effect of NDI MOIELY. ......ccccvevvvviivniierccc e 1289

Figure 11.10.F.12 a) Cycling performances of S cathodes with PP and PVDF as binder, respectively. b) S
cathodes fabricated using PP binders with different ratio between PENDI-350 and tri-Py. ¢) Cycling
performances of S cathodes with PP (PENDI-350: tri-Py = 1 : 1) binder with different loading amount

Figure 11.10.F.13 a) Cycling performances of S cathodes with PENDI-350 (2.0 mgS/cm?) and PVDF (3.1
mgS/cm?) as binder, respectively. b) SEM images of cathodes with PENDI-350 and PVDF as binder after 20
cycles. ¢) Cycling performance of sulfur cathode with PENDI-350/PVDF as a binder and the SEM image of
the cathode after 20 cycles. d) Cycling performance of sulfur cathode with PENDI-350/PVDF................... 1291

Figure 11.10.F.14 Cycling performances of cells with S cathodes with a) PENDI-350/PEO as binder (3.71
mgS/cm?) and b) PENDI-350/triPy/PEO (PPP) as binder (2.91 mgS/cm?). All cells were cycled with C rate of
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mgS/cm?). d) XPS spectrum of Li>S4 reacted with mesoporous carbon, and e) Li>Ss and doNDI mixture reacted
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PPPVDF binder immersed in organic electrolyte after 48 hours. c) Cycling performances of cathodes with
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performances of cathodes with PPPVDF with -SH surface modified carbon. f) The first discharge (at C/20
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Figure 11.10.F.16 Cycle capacity tests of improved and control cells in group A at 0.1C rate, including Al2
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Figure 11.11.A.1 (a-c) Voltage profiles of Li-O2 cells with the three electrolytes at selected cycles at a current
density of 0.2 mA cm2 under a capacity limited protocol of 1.0 mAh cm2. (d-f) Cross-sectional SEM images
of Li metal anodes from cycled Li-O; cells. (a,d) 1 M LiTf in G4, (b,e) HCE, and (c,f) LHCE................... 1304

Figure 11.11.A.2 (a) Voltage profiles of Li||Li symmetric cells cycling in different electrolytes at a current
density of 1.0 mA cm2 under a capacity limited protocol of 1.0 mAh cm2. (b) Cycle life of LOBs using
different electrolytes at 0.2 mA cm (200 mA g*) and capacity cutoff at 1.0 mAh cm2 (1000 mA g1). (c)
Cross-sectional SEM images of Li metal anodes in cycled LOB cells with DCE, TFEO-LHCE, TTE-LHCE,
and OTE-LHCE after 10™ cycles at a current density of 0.2 mA cm with a capacity limited protocol of 1.0
mAh cm2. (d) The radar chart for the properties of the electrolytes in this study. (e) DFT calculation data about
parasitic reaction energies of G4 solvent and three diluents with singlet OXygen. ..o 1305

Figure 11.11.A.3 (a) The formation process of PEO-supported SEI layer on the surface of Li metal anode by
GPE coating and pre-charging to 5 V electrochemically. (b) Schematic illustration of the role of PEO-
supported SEI layer and surface characterization results of Li metal surfaces after pre-charging step with and
without pre-PG coating. (c) Voltage profiles of LOB cells with and without PEO-supported SEI layer cycling
at a current density of 0.2 mA cm2 under a capacity limited protocol of 1.0 mAh cm2. Cycling performance of
LOBs corresponding to voltage profiles with repeated discharge and charge cycles at the same testing
(o700 11 ] o OSSOSO 1306

Figure 11.11.A.4 Analysis of SEI layers: (a) XPS and SEM images (Li»CO3 and LiF) of Li metal surface with
PPG5-0; (PEO-based gel polymer (PG) coating and electrochemical pre-treatment under O2) and with PLi-Ar
(without PG coating but with electrochemical pre-treatment under Ar). (b) Cross-sectional images and oxygen-
EDX maps of Li metal anodes with PLi-Ar or PPG5-0 after 10 cycles at a current density of 0.2 mA c¢cm
under a capacity limited protocol of 1.0 mAh cm in the operation voltage range of 2.0 — 5.0 V and the
corresponding illustrations for each SEM image. Electrochemical performance of Li-O; battery with redox
mediator [(2,2,6,6-tetramethylpiperidin-1-yl) oxidanyl, TEMPQO]: (c) Charging profiles of LOB cells with
TEMPO, (d) charge/discharge curves and (e) cycling of LOB cells with different SEI layers at a current
density of 0.2 mA cm under a capacity limited protocol of 1.0 mAh cm in the operation voltage range of 2.0
25511V 28RS 1307

Figure 11.11.B.1 Nano-engineering strategies for creating the ultra-small wetting and de-wetting dimensionality
of reduced Pt catalysts on a substrate. (a) Definition of wetting and de-wetting in a typical metal-nonmetallic
substrate system. (b) Formation of dimensionality reduced Pt with help of functional metal layers on a carbon
black substrate for a lithium oxygen battery, and the related regular open circuit voltage (OCV) for each

Figure 11.11.B.2 Examples of galvanostatic charge/discharge profiles of Li-O; batteries with (a) carbon black,
(b) Cr/C, (c) Au/C, (d) 3D Pt/C, (e) 2D Pt/Cr/C, and (f) OD Pt/Au/C in the voltage range of 2.2 - 4.5V vs.
Li+/Li Within @ fiXed CAPACITY. ....eiviieiere ettt et sb e re e e aenresreenee e e 1311

Figure 11.11.B.3 Schematic illustration of the charge and discharge processes with or without the Lil in Li-O2
batteries using ACs electrodes (a). The initial discharge—charge voltage profiles of Lil1M
LiTFSI/TEGDMEICs-O2 cell, Lil1 M LiTFSI/TEGDMEIACs-02 cell and Lil1M LiTFSI/TEGDME+0.5 M
LillACs-02 cell at a current density of 0.02 mA/cm2 (b). The CV curves of LillM LiTFSI/TEGDMEIACs-02
cell and Lil1M LiTFSI/TEGDME+0.5 M LillACs-O2 cell within a voltage widow of 2.0~4.5 V at a scanning
rate of 1 mv/s (inset: Enlarged CV CUrVE OF ACS) (C).cvveiveierieerieiiieseeiesese et sie ettt see e 1312

Figure 11.11.B.4 Electrochemical results of Li-O; batteries. Voltage profiles (a) and deep cycles (c) in 1 M Li
triflate/ TEGDME electrolyte with 0, 0.1 and 0.5 M Na triflate, respectively. VVoltage profiles (b) in TEGDME
based electrolyte with a total concentration of 1 M metal triflate. Cycle life (d) in 1 M Li triflate and 0.5 M Na
triflate. The current density for all the galvanostatic tests is 50 pA-cm2. DEMS measurement (e) of the
charging process of the Li-O; battery in 1 M Li*+ 0.5 M Na* electrolyte. The indication of the bond length of
TEGDME binding to Na and Li ions (f, g). Optimized geometry of the transition state of C-H activation of
TEGDME by NaO: (h). lllustration of possible reaction pathways of Li* and Na* during discharge. “M”

o [o] T L= 11T o I o T N () ST R 1313

List of Figures cix



Batteries

Figure 11.11.B.5 (a) cycling voltage profile of Li-O2 cell with Ir3Li-rGO cathode (b) UV-Vis absorbance curve
of titrant resulting from Li202 titration of discharged cell (c) Raman spectra of discharged Ir3Li-rGO cathode

1 T 220 o] 1314
Figure 11.11.C.1 (left) Charge and discharge profiles comparing LiClO4 and LiNO3 in the 100th cycle; (right)
comparison of battery capacity retention with the four salts over 100 Cycles. ........cccceveviiiiievciie i, 1317

Figure 11.11.C.2 Discharge/charge voltage profile. (a) 25mM Inls and current density of 0.5Ag™. (b) 25mM
Inl; and current density of 1Ag™. (c) 25mM InBrz and current density of 1Ag™. (d) 25mM InBr; and current
densities of 1Agt discharging and 2Ag Charging. .......ccccovrviireeiriiiseeiee e 1318

Figure 11.11.C.3 Characterization of Li anode in the Inls system. (a) Top-view SEM image of fresh anode
(Scale bar: 500nm). (b) Top-view SEM image of anode after the 5" discharge (Scale bar: 500nm). (c) Top-
view SEM-EDX composition mapping of anode for In (Scale bar: 500nm). (d) Cross-sectional SEM image of
anode after the 51 discharge (Scale bar: 10um). (e) Cross-sectional SEM-EDX composition mapping of anode
after the 5™ discharge for In (green) showing it present on surface, but not in the interior. (Scale bar: 10um). (f)
XPS results of Li anode showing In 3d after the 5" discharge cycle. (g) EIS measurements and fitted data for
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Figure 11.11.C.4 AIMD simulation of Li(100) interface with DMSO/IL electrolyte with a InX3 molecule added
to the electrolyte. (a) initial (left) and optimized (right) structures for Inls; arrow indicates the initial and final
position of In atom; (b) initial (left) and optimized (right) structures for InBrs; arrow indicates the initial and
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Figure 11.12.A.1 In-situ X-ray absorption spectrum (XAS) of NaCr,Ti1sS; at (a) Cr, (b) Ti and (c) S K-edges;
(d) The corresponding voltage profiles for the first charge. The divided in situ XAS K-edge XAS spectra of
three stages as marked in the bottom inset during the first charge process. The inset in the bottom part is
converted R space of ex situ sulfur K-edge EXAFS for pristine and full charged samples...........ccc.ccocerveneae 1324

Figure 11.12.A.2 (a) ex situ XRD data and (b) ex situ PDF data of pristine, charged, and discharged NaCrSSe;
(c) PDF data of pristine sample and (d) PDF data of charged sample fitted using DFT calculated structural
models. In both (c) and (d), contributions from major atomic pairs are also shown in the lower panels. ...... 1325

Figure 11.12.A.3 Ex situ XAS of Cr (a) and Se (b) XANES spectra of NaCrSSe electrodes at various
charge/discharge states which include pristine, half charged (HC, charged to a capacity of 70 mAh g1), full
charged (FC, full charged to 3.3 V), half discharged (HD, discharged to a capacity of 70 mAh g after full
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Figure 11.12.A.4 (a) S K-edge XANES spectra and (b) corresponding FT-EXAFS spectra of NaCrSSe
electrodes at various charge/discharge states which include pristine, full charged (charged to 3.3 V), full
discharged (discharged to 1.5 V after full Charged). ..........covevieieieiie e 1326

Figure 11.12.B.1 (a) Cyclic voltammogram at 0.1 mV s and (b) in-situ HEXRD in the 1%t cycle at 0.1 C of
BPC anode, (c) ex-situ HEXRD and (d) 3P NMR spectra of BPC anode at different charge/discharge

Figure 11.12.B.2 Representative charge/discharge curves, (b) cycle performance at 12 mA g, and (c, d) rate
performance of a Nao.ssNio.26ZN0.07Mno.6702/BPC cell with electrolyte of 1 M NaPFe¢/PC with 2 vol.%
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Figure 11.12.B.3 (a) High-resolution X-ray diffraction and (b) pair distribution function data for RPC
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Figure 11.12.B.4 (a) The 1st charge/discharge curve of RPC anode at C/10 (1C=2600 mA/qg). (b) cycling
performance of RPC anode at C/3. (c) Rate capability of RPC anode...........ccoceveiviviieneisinnenenee e 1331
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Figure 11.12.B.6 (a) Voltage profile and (b-d) corresponding SEM images of single RPC particle during
charge/discharge at 500 pA with Na metal anode; inset of (a) shows the estimated volume changes during
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pristine and ex situ CPAPN-S electrodes in the 1% cycle, indicating that S-O, S-C, and S-S bond lengths
generally increase during discharge and decrease during charge; (C) PDF data of charge-to-3V electrode
overlaid on the pristine data (without offset), showing the decrease of S-O peak and increase of S-S peak after
1t cycle. (D) A schematic illustration of the formation of chemical bonding stabilized carbon-small sulfur
COMIPOSITE. ...ttt ettt sttt b e bt e st e bt b e s b et e s e e b oo b e b e s e e b e e b e b e e eR e ek e e b b eR e e bt ebenb e s e e b e et e nbe b eneebenbenbeneas 1386

Figure 11.13.A.38 High-energy Li—S pouch cell. (a) Digital photograph of the large-area S electrode on a
coating machine. (b) Digital photographs of punched S cathode and Li anode (thickness = 50 um) for pouch
cell. (c) Digital photograph of the high energy pouch cell. (d) Cycling performances of Li—S pouch cells with
different energy densities and E/S ratios (mL g). (e) Relationship of the cumulative specific discharge
capacity and applied E/S ratio and active E/S ratio of pouch cells in (d). .....c.cccoovvvivieveiiiiieceeee, 1387

Figure I11.13.A.39 INL’s electrochemical analytic diagnosis (¢CAD) technique can transform a typical
charging-discharging curve into a cell IR-free voltage versus SOC (which corresponds to the Li content in
NMC cathode composition) curve to separate the thermodynamic and kinetic effect attributes. (Left) The
transformed curves show regions where NMC potential versus Li content in the NMC composition (pseudo-
OCV vs. x in LixNMC) correlation and the IR-free voltage versus SOC (Vir-tee VS. SOC) correlation are
compared. (Right) The effect from an electrode’s kinetic polarization hindrance (KPH) can then be derived
from the charging-discharging curves as “the degree of KPH effect” (nken = QRker / QRcin) as a function of
SOC AN CYCIE NUMDET. ...ttt bbbt e bbb e besbe s bt e b e sbe st e eneebenbenbeneas 1388

Figure 11.13.A.40 Thermal profiles for assorted rates associated with low convection..........c.ccccocvevveverennnns 1389

Figure 11.13.B.1 Electrochemical behavior of Li-metal anode and Li-S cell in different dual-phase electrolytes.
(a) Coulombic efficiency of Li-metal plating/stripping at the current density of 1 mA cm with a deposition
capacity of 1 mAh cm using Li|Cu cells in a traditional liquid electrolyte and different dual-phase
electrolytes. The Inset shows the schematic of Li-Cu cells using traditional liquid electrolyte and a dual-phase
electrolyte. (b) Cycling stability of Li-S cells in traditional liquid electrolyte and the Gen 2 dual-phase
electrolyte, respectively, at the current density of 50 mA g*. (c) Typical galvanostatic voltage profile of a Li-S

cell with Gen 2 dual-phase electrolyte at the current density 0f 50 MA g™l ..o 1403
Figure 11.13.B.2 Electrochemical cycling performance of the DDSA-PTA electrodes. ..........ccocoveevicvnnnenns 1404
Figure 11.13.B.3 Free energies of reactions 1 and 2 for different inorganic functional catalysts (IFCs) and their
efficacies for formation of POlYSUITIAE SPECIES. .......oivveieii e 1404
Figure 11.13.B.4 Coin cell test results of LIC-CFM-S electrode with optimized porosity of 51.0 % and 90 um
EICKINESS. .ottt ettt st et e st e s b e e te et et e s be e s e e b e b e e he et e et e e beeae e beebeehe et e beebeere e besteebeene et e 1405
Figure 11.13.B.5 Single layer pouch cell utilizing LIC-CFM-S electrode tested under lean electrolyte conditions
oL N 33T OSSPSR 1406
Figure 11.13.B.6 Cycling performance and rate capability of highly loaded sulfur cathode with alternating
layers of sulfur/mesoporous carbon and graphene or graphene/graphene nanoribbons (GNR) ..................... 1406

Figure 11.13.B.7 Improved rate capability of polymer-ceramic hybrid separators and enhanced ionic
conductivity of polymer/ceramic hybrid separators with gel electrolyte/PEG. .........ccccocvveiviieneieisinieienns 1407

Figure 11.13.B.8 Mitigation of soluble polysulfides by gel electrolyte over liquid electrolyte in Li-sulfur
batteries, and improved cell performance with gel ceramic electrolyte (GE) by inclusion of PEG ............... 1407

Figure 11.13.B.9 Structure from AIMD simulations. (a) HCE electrolytes of 3.7 and 5M LiFSI in DMC. Dark
tetrahedral regions are Li-ion centered complexes, usually coordinated with O from 3 anions and one solvent.
Shaded regions are 3-D networks of connected complexes. Empty (white) regions have uncoordinated
molecules. (b) LHCE electrolytes with less (3.9M) and more diluent (1.8M). Formation of islands is clear in
the 1.8M solution. (Chem. Mater. 32, 5973-5984 (2020)). (c) SEI formation by anion decomposition on the Li
metal anode in contact with a solution of LiFSI in trimethyl phosphate (TMP) solvent. J. Phys. Chem. C, 124,
21919-21934, (2020).) Color code: Li: purple, S: yellow, N: blue, O: red, F: light blue........c.cccocvvvrennennn. 1408

List of Figures CXV



Batteries

Figure 11.13.B.10 Li+ potential energy profile along the longitudinal z-axis calculated from MD simulations
for € =0 (blue) and for € = 0.75 V/A (red), at 300K ...........cccoverrreeieeeeseieeeressssessessessesssensesessessssensesesneesens 1409

Figure 11.13.B.11 Li oxidation and SEI morphologies in 2M solutions. (a) LiPF6 in DME: well-developed top
layer of LiF nucleation observed at the top. The bottom of the Li slab keeps Li metal density after 20 ns, and a
low-density Li region contains DME fragments and some intact DME molecules. (b) SEI structure and
composition obtained from LiCF;SOs in DME. (J. Mater. Chem. A, 8, 17036-17055, (2020)).......cccccevne.. 1409

Figure 11.13.B.12 3D printing of controlled architecture LLZO electrolyte structures as cathode ion-conducting
path, on top of dense/porous bilayer LLZO structures; (middle) 200 um high columns and (right) 100 um high
0 T IS 100 =SS 1410

Figure 11.13.B.13 Model calculations for solid-state battery performance; (left) voltage-capacity curves using
150 um high LLZO columns, 40 um in diameter at 100 um spacing between columns, filled with NMC, and
(right) specific energy as function of C-rate for various solid-state battery architectures to predict structure

needed to achieve 500 Wh/kg energy density at desired C-rate. ........ccocvvierivrreereriesieere e esee e see e 1410
Figure 11.13.B.14 SEMs of full cells; NMC filled columns (left) and sulfur filled grids (right). ................... 1411
Figure 11.13.B.15 Representative full cell performance; NMC filled columns at 60°C (left and middle) and
sulfur filled grids at 25°C (FIGNL). ...oveiieiec ettt e e eenreenee e e 1411
Figure 11.13.B.16 Sintered bilayers using (a) 10 vol % (b) 7.5 vol %, and (c) 5 vol % freeze tape cast

55 7/ TSR 1412
Figure 11.13.B.17 (a) LLZO with 200 nm ZnO coating. (b) Seamless Li/LLZO interface aided by ZnO coating
layer. (c) Porous LLZO coating layer (<10 um) on dense LLZO ..o 1412

Figure 11.13.B.18 (a)/(b) Cycling performance of solid-state battery using NMC cathode at C/10 in trouble-
shooting configuration. (c)/(d) Cycling performance of solid-state battery using NMC cathode at C/10......1413

Figure 11.13.B.19 Solution process regulates the microstructure of cathode to improve electrochemical
performance of a Li-PTO solid-state cell. a, The two-step preparation for DP and SP cathodes. (i) Mixing PTO
and Li®PSsCl powders in dry or solvent-assisted fashion. (ii) Powder compaction by uniaxial pressing. b-c,
FIB-SEM images on the cross-section of a (b) DP and (c) SP cathode (fPTO = 40 wt%). d, Reconstructed
TOF-SIMS images of DP and SP cathodes, showing the distribution of PTO (red), LisPSCI (blue) and
interphase (green) species. e, Specific energy of DP vs. SP cathodes at various PTO mass fraction. EPTO and
ECathode represent specific energy based on the mass of PTO or the whole electrode, respectively............ 1414

Figure 11.13.B.20 Charge-discharge profiles of the LCO/LPS-P205-CaO/L.i cell for the first 3 cycles (a) before
and (b) after LPS-P,0s-CaO was exposed in dry air for 8 hours. It was measured at 3.0-4.2 V and at 0.1 C,
3]0 OSSR 1415

Figure 11.13.B.21 Performances of 0.1 Ah Li||[NMC 811 pouch cell with all-fluorinated electrolyte (F-262A)
and 2.3 mAhcm-2: (a) charge/discharge profiles of the cell under a high stacking pressure of 2.0 MPa, the inset
shows Nyquist spectra of the pouch cell in cycling. (b) Cycling stability of NMC811 pouch cells under
different stacking pressure conditions (2.0/0.1 MPQ). ......cccciiriiriiiiniiienee et s 1416

Figure 11.13.B.22 Behavior of Li metal anode and NMC 811 cathode in the ionic liquid electrolyte. (a) The CE
of Li deposition and stripping in Li|| Cu coin cell at lean electrolyte condition with different capacities. (b) The
CE and capacity retention of NMC 811||Cu coin cell with 2mAh c¢cm cathode loading and lean electrolyte
condition at 0.5 mA cm. Inset is the cycling curve of NMC 811|| Cu coin cell at the same condition. (c). The
cycling curve of NMC 811|| Cu pouch cell with 2mAh c¢cm cathode loading with lean electrolyte condition
operated at 0.2C. (d) The CE and capacity retention of NMC 811||Cu pouch cell with 2mAh cm2 cathode
loading with lean electrolyte condition operated at 0.2C..........ccooieririeinieenne e 1416

Figure 11.13.B.23 (a) Li-metal plating/stripping CE on Bi-Gr coated copper current collector in 1M LiPFe
mixTHF electrolyte at 0.5 mA cm current density with different areal capacity (1.0-3.0 mAh cm); (b) The
galvanostatic charge and discharge curves at 50 mA-g/0.5 mA cm2 in all-fluorinated 1M LiPFs in
FEC:FEMC:HFE lean electrolyte. (Inset) Delithiation capacity and CE versus cycle number in all-fluorinated

cxvi List of Figures



FY 2020 Annual Progress Report

1M LiPFg in FEC/FEMC/HFE lean electrolyte. (Note: the specific capacity is calculated based on the total
weight of C/S composite with an area mass loading of ~10 MG-CM™).......ccccceririireiiiiiiiicece e 1417

Figure 11.13.C.1 Sintered bilayers using (a) 10 vol % (b) 7.5 vol %, and (c) 5 vol % freeze tape cast LLZ0O1421

Figure 11.13.C.2 (a) LLZO with 200 nm ZnO coating. (b) Seamless Li/LLZO interface aided by ZnO coating
layer. (c) Porous LLZO coating layer (<10 um) on dense LLZO ..o 1421

Figure 11.13.C.3 (a)/(b) Cycling performance of solid-state battery using NMC cathode at C/10 in trouble-
shooting configuration. (c)/(d) Cycling performance of solid-state battery using NMC cathode at C/10. .....1422

List of Figures cxvii



Batteries

List of Tables

Table ES- 1: Subset of EV Requirements for Batteries and CellS .........cccoooviieiiiciiiie e xviii
Table 1: Subset of Requirements for Advanced High-Performance EV Batteries and Cells. (Cost and Low
Temperature Performance are Critical REQUIFEMENTS). ....veeviiiiieeiei et 3
Table 2: Subset of Targets for 12V Start/Stop Micro-hybrid Batteries (Cost and Cold Cranking are Critical
REGUITEIMIENTS) ...ttt sttt bbbk b e e stk e s b e b e st e b e e b e b e e Rt e b e e b e b e Rt e b e eb e nb e b eb e e b e nb e neeseebesbenb e e 4
Table 3: Li ion conductivity and critical current density (CCD) against Li metal..........cccccocvivnieniiivinncennnn, 13
Table 4: Lithium-ion battery recycling prize Phase Il WINNEIS..........ccccooiiiiiiiiiiieese e 23
Table 1.1.A.1 Phase Il Down-selected cell iINfOrmation. ............cooooeiiiiiicin e 25
Table 1.1.D.1 Summary 8Ah Cell INFOrMAtiON .........cccviiiieie e 44
Table 1.1.D.2 Detailed Cell INfOrMELION ........cccoiiiiiieiees et 44
Table 1.1.D.3 Projected HA Cost Impact on Process and Component COSES........c.cccevereerieieieseeie s seeeesenas 47
Table 1.2.A.1 Key features of the EB processing pilot line at BMF. .........ccccoovvieiiieinieec e 53
Table 1.2.B.1 Electrolyte iNfOrMation. ...........ccoviieriiiiice et sre e see e 66
Table 1.2.C.1 Physical Properties of LNO-based Materials with 5% Dopants vs LNO Baseline Material ........ 72
Table 1.2.1.1 Summary of tape casting SysStem USALIlITY ..........cccceriiiiiireieie e 107
Table 1.2.K.1 Typical Cathode Materials Extracted from Patents Related to the Synthesis of Battery Materials.
Note that this only includes the patents with these exact compositions, not derivatives. .........c.ccccocevveveeenens 121
Table 1.3.C.1 Optimization of froth flotation column conditions. ...........ccoeoviiiiieiini e 157
Table 1.3.C.2 Analysis of froth and tailings purity for each optimized experiment.............ccccocveveviviviieriennnns 158
Table 1.3.C.3 Electrochemical performance of separated cathodes materials from a binary mixture of pristine
CAtNOAE MALEIIAIS. ...eviieeieeecie ettt bbb e b s bt e b et e nbe st e st etesbe st e e enesbeneeneenes 168
Table 1.3.C.4 Elemental composition for solvent-free relithiation products measured using GDOES............. 170
Table 1.3.C.5 Half-cell formation data for relithiated NMC (solvent-free process) .......cccocevvreerererenesesieneen 170
Table 1.3.C.6 Results of large-scale ionothermal experiments using LiBr as lithium precursor in
0944010 | I 72 [OOSR 171
Table 1.3.C.7 ICP-OES results for R-NCM large-scale eXperiments...........ccocvevererieneeiieseseseeseeseseseeniesnens 172
Table 1.3.C.8 Summary of electrochemical performance for large scale experiments using LiBr in
[C2MIM][NTT2] as the reaction MEIUM. ........cccviiiieieie et e e e sre e e sae e 173
Table 1.3.C.9 Summary of electrochemical capacities after 0.X M [RM] relithiation process for 1 hour........ 179
Table 1.3.C.10 Comparison of relithiation, first charge and reversible charge and discharge cycles at C/10 for
samples relithiated using scanning Voltage ProtoCOL...........ccoiiiiiiiriiiiie e e 181
Table 1.3.C.11 Elemental compositions of NMC111:NMC811 mixtures measured from GDOES analysis.... 184
Table 1.3.C.12 Elemental compositions from Ni-rich coating reactions measured from GDOES analysis...... 185
Table 1.3.C.13 NMR analysis of electrolyte extracted and crystallized from cells with PC added, which was
then extracted with supercritical CO2 for different numbers of CYCIES .........cccvveiiiiiiiiicic e 201
Table 1.3.C.14 Selected LIBRA Base Case Parameters. .........cooeveiiirereieeine et 206
Table 1.3.C.15 Sample information for XPS 0 SEM STUAY........ccooviiririieiiiesiee e 213

cxviii List of Tables



FY 2020 Annual Progress Report

Table 1.3.C.16 CAMP cells to be used for thermal Characterization. The cathode material was supplied by
Toda and the anode material was supplied by Superior Graphite. Contaminants were added to the slurry before

COAtING the CUITENT CONBCIONS ... vttt sttt e e e tesreene e e nreareenee e e 216
Table 1.3.D.1 Overview of Program Hardware Deliverables and Build Strategy..........ccccooceeviieininccnenennn 227
Table 1.3.D.2 Materials Properties of Direct Recycled NCM111 From Whole Cell Feedstock via Two Different
ROULES ...t et R R R e e R AR e R e R R R R R R e n R e 230
Table 1.3.D.3 Materials Properties of Recycled/Pristine NCM111 Blends for Cell Builds 2and 3.................. 231
Table 1.4.C.1 TESE PrOOCON ...ttt bbbttt bbb b e bt b e bbb et bt 253
Table 1.4.C.2 Test protocol for XFC coupled WIth EIS ..o 257
Table 1.4.D.1 Tabulated results of testing the effect of upper charge voltage limit (4.2 V vs. 4.3 V) and

operating temperature (30°C vs. 40°C) during 10 minute CC/CV charge, 1C discharge protocol................... 265

Table 1.4.J.1 Summary of Li detection techniques that were the primary focus of the XCEL team. They include
observing a Li plating peak in the dQ/dV plot, observing a similar peak during open circuit voltage (OCV) that
is attributed to Li intercalating into the graphite after plating, inductively coupled plasma mass spectrometry
(ICP-MS), mass spectrometry titration (MST), 3w sensor measuring thermal conductivity, measuring changes

in the cell pressure, Raman mapping, and X-ray diffraction (XRD) Mapping .........ccecervrivrivrreererinsinsieerennens 305
Table 1.4.J.2 MST results from electrode in the adjacent electrode piCture...........ccoevvvviereiiene e 320
Table 1.4.M.1 Properties of Selected Graphite Powders for Anode Architecture Development ...................... 374
Table 1.4.M.2 Anode Architectures EXplored in FY 2020.........cccooviiiiiieieieseere e nnen 375
Table 1.4.0.1 Simulation parameters of the 3D thermal MOdeling..........ccocooviiiiiieininiie e 416
Table 1.5.A.1 Main Input Categories fOr ENSTOE........cccovoiiiieiesie s 436
Table 1.5.A.2 Main Output Categories fOr ENSTIOIE .........cccoviiiiiereie e 436
Table 1.5.A.3 Main Input Categories fOr EV-ENSITE .......ccccviiiiieice e 437
Table 1.5.A.4 Main Output Category fOr EV-ENSITE .........coviiirieieecenee e 437
Table 1.5.A.5 DIreCEXFC SCENAIIOS .....c..ceiiiitiitiieiieie sttt bbb bbb bbb b 438
Table 1.5.A.6 DirectXFC Vehicle Fleet COMPOSILION.........cccoiiiieriiiiice e sne s 438
Table 1.5.A.7 Main Input Categories fOr REOPL ..o 439
Table 1.5.A.8 Main Output Category fOr REOPL.........ccooveiiiiiieiee sttt nne 439
Table 1.5.A.9 Main Input Categories for EnergyPlus and OpenStudio...........ccccevvvieiiiiiene s 440
Table 1.5.A.10 Main Output Category for EnergyPlus and OpenStudio ...........cccovreernenineiensenniee e 440
Table 1.5.A.11 Main Input Categories for SAM Battery MOdUIE ..o 441
Table 1.5.A.12 Main Output Category for SAM Battery ModUIE...........cccocviiiieiiii e 441
Table 1.5.A.13 Main Input Categories for SAM UtilityRate5 MOdUIE .........c.cccovvrieieivniineieiese e 441
Table 1.5.A.14 Main Output Category for SAM UltilityRate5 Module...........cccoeeiriiininiiiirecee e 441
Table 1.5.A.15 Main Input Categories for SAM CashLoan Module.............cccoooeviiiiiiiienic e 442
Table 1.5.A.16 Main Output Category for SAM CashLoan Module ..o 442
Table 1.5.A.17 EVGo High Variance in Average Charging Events Per Day Per Port for Different Properties445
Table 1.5.A.18 Cash Flow HUstrative EXamPIE.........ccccoveiiiiiiiiieic it 453

List of Tables CXix



Batteries

Table 1.5.A.19 Demand Charge SChEAUIE. ..o e 458
Table 1.5.A.20 Time-of-Use Energy Charge SChedule............coooeiiiiiiie i 459
Table 1.5.A.21 List of Commercial DCFCs Available at NREL’S EVRI Lab.........cccccocovviiiiniinine e 473
Table 1.5.A.22 Model Parameters for Commercial DCFCs Available at NREL’s EVRI Lab..........cc.cccceuenee. 474
Table 1.5.A.23 List of Commercial Bidirectional Converter Available at NREL’s ESIF .........ccccccoeiviiiiinen, 474
Table 1.5.A.24 Model Parameters for Commercial Bidirectional ESS Converter During Charging Mode......474
Table 1.5.A.25 Model Parameters for Commercial Bidirectional ESS Converter During Discharging Mode .474
Table 1.5.A.26 Model Parameters for Dual Active Bridge CONVEIEN .........ccocviereirienenieee e 477
Table 1.5.A.27 Relationships Between Station Design Parameters and Resulting Cell Cycling Parameters
Based on Usage at Design TRreSNOIA ..........cooiiiiiiiiiiee e 479
Table 1.5.A.28 Status OF TS ATICIES.....c.vciiiiieieieere et sre e 481
Table 1.5.A.29 Test Results Summary at End of FY 2020 ........cccooviiiiiieic et 482
Table 1.5.A.30 Optimized Power Profiles for Each Chemistry and Cell Size @...........cccccooviivviveie v 482
Table 1.5.A.31 All Combinations of Variables for Cycling and Calendar Aging, and Those Chosen Based on
LT @t Tl o] g L AN o] o] £ - Vo o PSS 484
Table 1.6.A.1 Comparing the useable specific energy and useable energy density of rectangular and cylindrical
cells with NMC622-Graphite electrodes [Useable Energy = 85% of Rated Energy].......c.ccocevvvviennivinnnnnne. 501
Table 1.6.A.2 Effect of current collector thickness on cell area specific impedance and cell specific energy. 502
Table 1.6.B.1 Status of Deliverables for TeSHNG........cccieriiiiiiee e 506
Table 1.6.D.1 Mean absolute error of the capacity fade of LFP/Gr cells from [1], and a comparison of the error
from the baseline model vs. the machine-learned MOGEIS ............coveiiiiiieiiiii i 520
Table 1.6.D.2 Number of parameters and fit metrics of the baseline and machine-learned reduced-order
capacity fade models of Kokam 75 Ah NMC/Gr cells. Baseline model previously published in [2]............... 522
Table 1.6.E.1 Summary of Electrode Library DiStriDULIONS...........ccvoiiiiiiiriiieiereese e 532
Table 1.6.F.1 SiO electrode composition with various amount of carbon black and binder.............c.cccceevenie 536
Table 1.6.F.2 SiO electrode composition with various amount of SWCNT and binder............cccccovvvvivriverennnns 538
Table 1.6.F.3 Specific capacity of half cells at Various rage ..........cccoovvererriinieneicse e 541
Table 1.6.G.1 Articles TeSted FOr USABC .........ooiiiieeeere et bbb bbb b 547
Table 1.6.G.2 Articles Tested for BENChMArK...........cooiiiiiii e 547
Table 1.6.G.3 Articles Tested for LOW CoDalt ..........ccocoviieiiiiie e 548
Table 11.1.A.1 Volume Resistivity of Alternative Electrode Conductive Additives.........cccccvevrvrerncviienennn. 567
Tablle 11.1.A.2 Electrode Thickness of Variety of Pristine & Cycled Anode Electrodes made by the CAMP
FACHITLY ...t b bbb b b e b bbb e bbbt bbb b s 570

Table I11.1.A.3 Molecular weight, initial viscosity, shear flow index, initial gravimetric capacity, and number of
cycles for each electrode made with PCM blended binder with and without dispersant and BM blended binder

WiIth and WIthOUE GISPEISANT .......c.veiiiieiiieceee bbb bbbt e bbb bbbt 585
Table 11.1.A.4 Requirements of test and counter leCtrOdeS .........ccvviviirieiiie e 587
Table 11.1.A.5 Cell configurations and Cycling ProtOCOIS..........cccceiiiieieieii e 596

CXX List of Tables



FY 2020 Annual Progress Report

Table 11.1.A.6 Most intense ions detected via HPLC/ESI-MS ..o 607
Table 11.1.B.1 Summary of Initial Zintl Phase Formation on Si Thin Film.......c.ccccocviviivniiiniee e 621
Table 11.1.B.2 Requirements of Test and Counter EIECIIOUES .........cccvvveiereiirieee e 629
Table 11.1.B.3 Elemental Composition of Si and Si-Sn Films at Pristine State and After the 1%t Lithiation and
150 200 N0 51 DEIENIAIION.2......eveeee ettt ettt et ettt et e et e e e et et ee e st e ee et e e seese e e eeeeaesae st eseeeeresreseeees 641
Table 11.1.B.4 Summary of SSRM Findings on the Pristine and Cycled Thin-Film Samples.........cc.cccccevenine 655
Table 11.1.B.5 Surface Composition of Cycled Electrodes Obtained from XPS ...........ccccociviiiivi e 657
Table 11.1.C.1 Assignment of EC and DHB species in MALDI Measurements ...........cccoeveveneneneienesenieneans 708
Table 11.3.D.1 Comparison with Single Crystalline Ni-rich NMC (Ni>0.6) Reported in Literature................ 840
Table 11.3.E.1 Summary of Physical Properties, lonic Conductivity, and Li* Transference Number of
PMpipFSI with Different LIFST CONCENIIALIONS. .......c.oieiiirerieieesie ettt s 845
Table 11.3.G.1 NMC532 Cell Characteristics and OCV Prior to Disassembly .........ccccevevivvivnveresieneseeneniens 872
Table 11.3.G.2 NMC532 Pouch Cell THICKNESS .......cciiieiiirieiieese e e 876
Table 11.4.A.1 Project performance targets for cathode active material and cell made with this material ....... 880
Table 11.4.A.2 BP1 GO/NO-GO teChNICal TargetS.......ccviveiiiiiieiee ettt nne 881

Table 11.4.A.3 Impurity measurements for NCM811 by RST samples at different post processing stages ..... 882
Table 11.4.A.4 Cathode energy densities for full cells made with coated and uncoated NCM811 (by RST) ...885

Table 11.4.B.1 EleCtrolyte FOrMUIALIONS ........cceiiiiiiiiieiee sttt bbbt s 891
Table 11.4.B.2 The Energy Density of the 3 Ah Multi-layer Pouch Cell ...........cccccoovvviiiiniiiiniee e 894
Table 11.4.E.1 PerformManCe TAIQELS........couevierierieeeeserieieieste st see s te sttt ste sttt ste st e ese st sbeseenessesaeseenens 916
Table 11.4.G.1 Lattice Parameters and Li/Ni Mixing of NCM, NCM_AI,03 and NCM_AI(OH)s........c.c........ 937
Table 11.6.A.1 Experimentally observed exchange current densities at the cathode/solid-electrolyte

1111150 £ 161 TR SRS TP P PO PR UPRTPROPPRPRRPRPPN 993
Table 11.6.F.1 Comparison of Li and Mg electrodeposition parametric inputs for bridging atomic calculations
and phase-field MOTEIING .........cv ot e e srenre e e seeneas 1025
Table 11.8.D.1 Interfacial Enthalpy and electrical conductivity of selected materials at T = 300K................. 1076
Table 11.9.A.1 Composition of various PEO-POSS diblock and POSS-PEO-POSS triblock copolymers.....1103
Table 11.9.A.2 Composition of the triblock terpolymer PEO-POSS-PSTFSILi ......cccccvvvviivvveecc e 1104
Table 11.9.A.3 Properties of electrolytes used for lithium filtering study ..........cccccovvviveiiii i 1104
Table 11.9.E.1 Conductivity and CCD of the Multifunctional SSE Materials .........c..ccocoovereivniinineininnenne, 1134
Table 11.9.H.1 Decomposition energy and phase equilibria of LLZ with lithiated and delithiated (prefix “d-”)
LCO and NMC111 from thermodynamic analyses based on first principles data..............ccccceeevivvviiveriernnnn. 1149

Table 11.9.P.1 Cluster-ion based structures studied as candidates for electrolytes of lithium superionic
conductors. "Z" stands for the number of formula units in the unit cell of the identified structure. "S" means
stable and "INS" means unstable. "IC" means the calculated ionic conductivity at room temperature. "E,"
MEANS the ACTIVALION BNEIIY ......cuiiiteiiieieiieteete ettt bbbt e bbbt bbbt b bbb et e b et nb b s 1216

Table 11.10.F.1 Composition/Properties of Five Novel SIGs in Comparison to Li(G4)TFSI..........ccccvevvenene. 1277

List of Tables CXXi



Batteries

Table 11.10.F.2 Composition of SIG/S/C slurry (and subsequent cathode) by weight. The demonstration cell
formula was used for QSS cells with ~1 mgs/cm? cathode loading, while the updated formula is intended for
high-10ading (4-5 MQGS/CM?2) CEIIS .......ciiiiviietiiieee ettt 1283

Table 11.10.F.3 The key compositions of final cell, including cathode, separator, electrolyte and anode...... 1294
Table 11.10.F.4 Test cell numbers and sulfur loading of deliverable test cells ..., 1296
Table 11.12.B.1 Summary of Previously Reported Pb-based Anode for Lithium-ion Batteries ..................... 1335

Table 11.12.C.1 Coulombic Efficiencies (CE) for Sodium Half Cells containing NaxTi>.y[lyO4 Electrodes as a
Function of Electrolytic SOIUtion COMPOSITION ........cccveiiiiiieie e nee s 1346

oxxii List of Tables



FY 2020 Annual Progress Report

Vehicle Technologies Office Overview

Vehicles move our national economy. Annually, vehicles transport 11 billion tons of freight—about $35
billion worth of goods each day>—and move people more than 3 trillion vehicle-miles.* Growing our economy
requires transportation, and transportation requires energy. The transportation sector accounts for about 30% of
total U.S. energy needs® and the average U.S. household spends over 15% of its total family expenditures on
transportation, making it the most expensive spending category after housing.®

The Vehicle Technologies Office (VTO) funds a broad portfolio of research, development, demonstration, and
deployment (RDD&D) projects to develop affordable, efficient, and clean transportation options to tackle the
climate crisis and accelerate the development and widespread use of a variety of innovative transportation
technologies. The research pathways focus on electrification, fuel diversification, vehicle efficiency, energy
storage, lightweight materials, and new mobility technologies to improve the overall energy efficiency and
affordability of the transportation or mobility system. VTO leverages the unique capabilities and world-class
expertise of the National Laboratory system to develop innovations in electrification, including advanced
battery technologies; advanced combustion engines and fuels, including co-optimized systems; advanced
materials for lighter-weight vehicle structures; and energy efficient mobility systems.

VTO is uniquely positioned to accelerate sustainable transportation technologies due to strategic public-private
research partnerships with industry (e.g., U.S. DRIVE, 215 Century Truck Partnership) that leverage relevant
expertise. These partnerships prevent duplication of effort, focus DOE research on critical RDD&D barriers,
and accelerate progress. VTO focuses on research that supports DOE’s goals of building a 100% clean energy
economy, addressing climate change, and achieving net-zero emissions no later than 2050 to the benefit of all
Americans.

Annual Progress Report

As shown in the organization chart (below), VTO is organized by technology area: Batteries & Electrification
R&D, Materials Technology R&D, Advanced Engine & Fuel R&D, Energy Efficient Mobility Systems, and
Technology Integration. Each year, VTO’s technology areas prepare an Annual Progress Report (APR) that
details progress and accomplishments during the fiscal year. VTO is pleased to submit this APR for Fiscal
Year (FY) 2020. In this APR, each project active during FY 2020 describes work conducted in support of
VTO’s mission. Individual project descriptions in this APR detail funding, objectives, approach, results, and
conclusions during FY 2020.

3 Bureau of Transportation Statistics, Department of Transportation, Transportation Statistics Annual Report 2018, Table 4-1. https://www.bts.gov/tsar.

4 Transportation Energy Data Book 37" Edition, Oak Ridge National Laboratory (ORNL), 2019. Table 3.8 Shares of Highway Vehicle-Miles Traveled by Vehicle
Type, 1970-2017.

5 Ibid. Table 2.1 U.S. Consumption of Total Energy by End-use Sector, 1950-2018.

5 Ibid. Table 10.1 Average Annual Expenditures of Households by Income, 2016.
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Batteries Program Overview

Introduction

During the fiscal year 2020 (FY 2020), the Vehicle Technologies Office (VTO) battery program continued
research and development (R&D) support of technologies for plug-in electric vehicles (PEVS), e.g., plug-in
hybrids, extended range electric vehicles, all-electric vehicles, and some hybrid electric vehicles (including 12
volt start/stop hybrid). One objective of this support is to enable U.S. innovators to rapidly develop next
generation of technologies that achieve the cost, range, and charging infrastructure necessary for the
widespread adoption of PEVs. Stakeholders involved in VTO R&D activities include universities, national
laboratories, other government agencies and industry partners — including automakers, battery manufacturers,
material suppliers, component developers, private research firms, and small businesses. VTO works with key
U.S. automakers through the United States Council for Automotive Research (USCAR) — an umbrella
organization for collaborative research consisting of Fiat Chrysler LLC, the Ford Motor Company, and the
General Motors Company. Collaboration with automakers through the U.S. DRIVE (Driving Research and
Innovation for Vehicle Efficiency and Energy Sustainability) partnership enhances the relevance and the
success potential of the research platform. An important prerequisite for the electrification of the nation’s light
duty transportation sector is the development of more cost-effective, longer lasting, and more abuse-tolerant
PEV batteries and accordingly, VTO battery R&D is focused on the development of high-energy batteries for
PEVs and very high-power devices for hybrid vehicles.

Goals

The goals of this research are to address barriers to EVs reaching the full driving performance, convenience,
and price of an internal combustion engine (ICE) vehicle. EVs have the advantage of a very high efficiency
compared to other vehicle types, a simplified drive train, and a flexible primary energy source (i.e., the
electricity needed to charge an EV can come from coal, natural gas, wind turbines, hydroelectric, solar energy,
nuclear, or any other resource). Another current focus is the 12V start/stop (S/S) micro-hybrid architecture, in
which the engine is shut down whenever a vehicle stops. Vehicles with the S/S functionality are being
deployed worldwide. The 12V battery provides power for auxiliary equipment (e.g., the radio and air
conditioning) and then restarts the engine when the vehicle moves. Current 12V S/S batteries, typically lead-
acid batteries, have a poor life. Table 1 and Table 2 show a subset of the targets for high-performance EVs and
12V start/stop micro hybrid batteries that have been set by U.S. DRIVE’, respectively.

Table 1: Subset of Requirements for Advanced High-Performance EV Batteries and Cells.
(Cost and Low Temperature Performance are Critical Requirements).

Energy Storage Goals (by characteristic) System Level Cell Level
Cost @ 100k units/year (kWh = useable $125/kWh* $100/kWh
energy)
Peak specific discharge power (30s) 470 W/kg 700 W/kg
Peak specific regen power (10s) 200 W/kg 300 W/kg
Useable specific energy (C/3) 235 Wh/kg* 350 Wh/kg
Calendar life 15 years 15 years
Deep discharge cycle life 1000 cycles 1000 cycles
Low temperature performance >70% useable energy @C/3 >70% useable energy @C/3
discharge at-20°C discharge at-20°C

7 https://www.uscar.org/guest/article_view.php?articles_id=85
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Table 2: Subset of Targets for 12V Start/Stop Micro-hybrid Batteries
(Cost and Cold Cranking are Critical Requirements)

Energy Storage Goals

(by characterlstic) Under the hood Not under the hood
Maximum selling price (@220k $220* $180*
units/year)
Discharge pulse (1s) 6 kW
Cold cranking power, (-30°C) 6 kW for 0.5s followed by three 4 kW/4s pulses®
Available energy (750W acc.) 360 Wh
Peak recharge rate (10s) 2.2 kW
Sustained recharge rate 750 W
Cycle life 450 k
Calendar life 15 years at 45°C* 15 years at 30°C**
Maximum weight 10 kg
Maximum volume 7 liters

*Current commercial cells do not meet this goal
**Current cells almost meet this goal

State of the Art

Battery R&D attempts to advance battery technology to help improve the market penetration of PEVs and
hybrid vehicles by overcoming the current barriers. To accomplish this, it focuses on: (1) a significantly
reduced battery cost, (2) increased battery performance, e.g., extreme fast charge (XFC) and low temperature
performance for enhanced lithium-ion, (3) improved life advanced chemistry cells, (4) increased tolerance to
abusive conditions; and (5) more cost-effective recycling and sustainability.

The current status of the broad battery chemistry types (current lithium-ion, next gen, and BLI) is summarized
in Figure 1. Battery R&D spans mainly three areas:

e Current technology (enhanced lithium-ion): including cells with current materials (graphite
anode/transition metal oxide cathode) and features like XFC compatibility, low temperature performance
and improved abuse tolerance.

e Next-gen lithium-ion: Cells containing an alloy anode, usually silicon-based, and/or a high voltage
(>4.5 V) cathode.

¢ Beyond lithium-ion (BLI): Cells containing Li metal anodes.

Over the past ten years, PEVs have become more commercially viable, with battery costs dropping over 80%
since 2010. Further cost reductions in high-energy batteries for PEVs are always desirable. In addition,
although today’s batteries approach very attractive cost numbers, they still need the ability to accept extreme
fast charging (XFC) and to perform better in low-temperature operations to compete with ICEs in all-weather
performance and “refueling” convenience. Research into “enhanced lithium-ion” batteries (which would
providing these functionalities) is one of the R&D focus areas. For further gains in energy density and cost
reduction, research is needed in both “next gen” chemistries (which employ an alloy anode and/or a high
voltage cathode) and BLI chemistries (see Figure 1). Cycle and calendar lives of next-gen and BLI chemistries
fall well short of EV goals. Most cells employing a significant amount of silicon provide around 1,000 deep-
discharge cycles but with less than two years of calendar life; BLI cells typically provide much less of a cycle
life (250 cycles or less). In addition, the requisite low temperature performance and extreme fast charge
capability are lacking in all chemistries.
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Current Technology Next Generation Longer-term
Lithium-ion Lithium-ion Battery Technology
Graphite/NMC Silicon Composite/High-voltage NMC Lithium Metal

Battery Pack Cost Battery Pack Cost Battery Pack Cost
* Current: $235/kWh * Current: $256/kWh * Current: ~$320/kWh

* Potential: $100-160/kWh +  Potential: $90-125/kWh * Potential: $70-120/kWh
‘ I TBD

Large-format EV cells: Large-format EV cells: Large-format EV cells:

Current cycle life: Current cycle life: Current cycle life:

Calendar life: Calendar life: Calendar life:

Mature manufacturing: Mature manufacturing: Mature manufacturing:

Fast-charge: Fast-charge: Fast-charge:
R&D Needs R&D Needs R&D Needs
* High-voltage cathode/electrolyte * High-voltage cathode/electrolyte * High-voltage cathode
* Lower-cost electrode processing * Lower-cost electrode processing * Lithium protection
* Extreme-fast charging * Durable silicon anode with * High-conductive solid electrolyte

increased silicon content

Figure 1. Chemistry classes, status, and R&D needs

An overview of the candidate battery technologies and their likely ability to meet the DOE cost goals are
shown in Figure 2. Because of the large variation in different battery technologies, battery research also
includes multiple activities focused to address remaining high cost areas within the entire battery supply chain.
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Figure 2. Potential for Future Battery Technology Cost Reductions

Batteries Program Overview 5



Batteries

Battery Technology Barriers
The major remaining challenges to commercializing batteries for EVs (as well as 12V start-stop micro-hybrid
batteries) are as follows:

A. Cost. The current cost of high-energy lithium-ion batteries is approximately $150 — $200/kWh (on usable
energy basis), a factor of two-three times too high from where it needs to be. The cost of lithium-ion-based
12V micro-hybrid batteries (which offer significantly better life and higher capacity than conventional lead
acid batteries) is approximately 50% too high compared to lead acid. The main cost drivers are the high cost of
raw materials, costs associated with materials processing, the cell and module packaging, and manufacturing.

B. Performance. Historically, a higher energy density was needed to reduce the weight and volume of PEV
batteries, but those weight and volume issues have been to a large degree been addressed. The use of higher
energy materials is still an effective way to reduce costs further and extend driving range, but cell chemistries
that provide higher energy have life and performance issues. Also, existing chemistries (e.g., graphite anodes
paired with transition metal oxide cathodes) need improvement in XFC and low temperature performance to
compete favorably with gas-powered vehicles in the areas of performance and customer convenience. The
main performance issue with lithium-ion 12V start/stop batteries is a challenging “cold start” requirement at -
30°C coupled with high or room temperature life.

C. Life. The life issue for mature lithium-ion technologies has mainly been mostly addressed. However, both
next-gen and BLI cell technologies still suffer major cycle and calendar life issues. The life of lithium-ion-
based 12V start/stop micro-hybrid batteries is relatively good at room temperatures. However, enhancing cold
crank performance often shortens battery life at the high temperatures found in the under the hood application.

D. Abuse Tolerance. Many lithium-ion batteries are not intrinsically tolerant to abusive conditions; however,
full packs have been engineered by automotive OEMSs to mitigate much of the risk. The reactivity of high
nickel cathodes and flammability of current lithium-ion electrolytes are areas for possible improvement. The
characteristics of next-gen and BLI chemistries to abusive conditions are not well-understood. However,
silicon anode cells show very high temperatures during thermal runaway and lithium metal-based batteries
have a long history of problematic dendrite growth which can lead to internal shorts and thermal runaway.
Thus, research into enhanced abuse tolerance strategies will continue.

E. Recycling and Sustainability. Currently, automotive OEMs pay a relatively large cost (5%-15% of the
battery cost) to recycle end of life PEV batteries. The various chemistries used in lithium-ion cells results in
variable backend value. Alternatively, unless they get recycled, lithium-ion batteries could lead to a shortage of
key materials (lithium, cobalt, and nickel) vital to the technology. Finding ways to decrease the cost of
recycling could thus significantly reduce the life cycle cost of PEV batteries, avoid material shortages, lessen
the environmental impact of new material production, and potentially provide low-cost active materials for
new PEV battery manufacturing.

Program Organization Matrix

VTO’s energy storage effort includes multiple activities, ranging from focused fundamental materials research
to prototype battery cell development and testing. The R&D activities can involve either shorter-term pre-
competitive research by commercial developers or exploratory materials research generally spearheaded by
national laboratories and universities. The program elements are organized as shown in Figure 3. Battery R&D
activities are organized into the following program elements: Advanced Batteries and Cells R&D, Battery
Materials R&D, and the current focus.
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Figure 3. Battery R&D Program Structure

Special Focus =

Advanced Cell and Battery Research and Development activity. This activity focuses on the development
of robust battery cells and modules to significantly reduce battery cost, increase life, and improve performance.
In this report, Part of this effort takes place in close partnership with the automotive industry, through a
cooperative agreement with the United States Advanced Battery Consortium (USABC). In FY 2020, the
USABC supported five cost-shared contracts with developers to further the development of batteries and
battery components for PEVs and HEVSs. In addition to the USABC projects, DOE supports battery and
material suppliers via contracts administered by the National Energy Technology Laboratory (NETL). Other
projects in this area include performance, life and abuse testing of contract deliverables, laboratory- and
university-developed cells, and benchmarking new technologies from industry; thermal analysis, thermal
testing and modeling; cost modeling; secondary usage and life studies; and recycling studies for core materials.
The processing science & engineering activity supports the development and scale-up of manufacturing
technologies needed to enable market entry of next-generation battery materials and cell components —
emphasizing disruptive materials and electrode production technologies that could significantly reduce cost
and environmental impact while increasing yield and process control relative to existing production
technologies. Several small business innovation research (SBIR) projects, also supported by VTO, are focused
on the development of new battery materials/components and are the source of new ideas and concepts and are
covered in that chapter.

Advanced Materials Research activity. This activity addresses fundamental issues of materials and
electrochemical interactions associated with rechargeable automotive batteries. It develops new/promising
materials and uses advanced material models to discover them and their failure modes, as well as scientific
diagnostic tools and techniques to gain insight into why they fail. This work is carried out by researchers at
national labs, at universities, and at commercial facilities. It includes the next generation lithium-ion research
activity focused on the optimization of next generation, high-energy lithium-ion electro-chemistries that
incorporate new battery materials. It emphasizes identifying, diagnosing, and mitigating issues that impact the
performance and lifetime of cells constituted of advanced materials. Research continues in the six areas of
advanced anodes, advanced cathodes, advanced electrolytes, electrode issues, interfaces, diagnostics, and
modeling. The beyond lithium-ion (BLI) Technology activity addresses fundamental issues associated with
lithium batteries, develops new/promising materials and uses advanced material models to discover such
materials using scientific diagnostic tools/techniques. It includes solid-state battery technologies, lithium
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metal, lithium sulfur, lithium air, and sodium-ion systems. The newly-started VTO Battery500 projects are also
managed in conjunction with this program element.

Special Focus. The current focus targets three areas of battery research. The first area is concerned with
enabling extreme fast charging (XFC) in enhanced lithium-ion systems. In the second area, recognizing the
issues of price volatility and supply reliability with cobalt DOE recently started new projects to develop and
optimize low cobalt cathode materials. The third area consists of a set of recycling and sustainability projects,
which involve studies of full life-cycle impacts and costs of battery production and use; cost assessments and
impacts of various battery recycling technologies; and the material availability for recycling and secondary
usage and their cost impacts.

As a further resource, the Electrochemical Energy Storage Roadmap describes ongoing and planned efforts to
develop battery technologies for PEVs and can be found at the EERE Roadmap page
http://energy.gov/eere/vehicles/downloads/us-drive-electrochemical-energy-storage-technical-team-roadmap.
VTO also has extensive ongoing collaboration efforts in batteries R&D across the DOE and with other
government agencies. It coordinates efforts on energy storage with the DOE Office of Science, and the DOE
Office of Electricity. Coordination and collaboration efforts include membership and participation in program
reviews and technical meetings by other government agencies, and the participation of representatives from
other government agencies in the contract and program reviews of DOE-sponsored efforts. DOE also
coordinates with the Department of Army’s Advanced Vehicle Power Technology Alliance, the Department of
Transportation/National Highway Traffic Safety Administration (DOT/NHTSA), the Environmental Protection
Agency (EPA), and the United Nations Working Group on Battery Shipment Requirements. Additional
international collaboration occurs through a variety of programs and initiatives. These include: the
International Energy Agency’s (IEA’s) Hybrid Electric Vehicles Technology Collaboration Program (HEV
TCP); the G8 Energy Ministerial’s Electric Vehicle Initiative (EVI); and bilateral agreements between the U.S.
and China.

Battery Highlights from FY 2020

The following are some of the highlights associated with battery R&D funded by VTO (including highlights
related to market developments, R&D breakthroughs, and commercial applications).

Developed Li-lon Cell Brings 10-Minute Fast Charging Closer to Reality for Electric Vehicles. The
convenience of quickly refilling a car is a major advantage that still exists for gasoline vehicles compared to
fully electric alternatives. While fast charging EVs presents challenges to electricity grids and charging
stations, perhaps the most difficult hurdles to overcome are from the Li-ion battery cell itself. During fast
charge the high currents typically cause higher temperatures and uneven chemical reaction rates within the
cells. These operating conditions in turn lead to faster cell degradation. Especially unfortunate, these
degradations typically become more intense as the Li-ion cells energy density is increased.

One of the most straightforward ways to change a Li-ion cells performance and energy density is by using
different materials. Cell component material properties differ based on composition and physical attributes,
which in turn influences the cells performance. The cathode, the most expense cell component, is especially
important to improve. Higher capacity cathodes lead to more energy density, while improved properties slow
cell degradation and resistance increases. Using the full concentration gradient (FCG) cathode technology that
Microvast is developing for commercialization cathodes with tailored surfaces, more stable to fast charge
effects, were prepared. The FCG technology allows scientists and process engineers to change the atomic
composition of metals throughout the cathode particle, allowing more desirable metal oxide combinations to
be targeted at locations most vulnerable to degradation. Also, as the nickel content of the prepared FCG was
increased the prototype cells C/3 energy density could be improved.

Initially a 200 Wh/kg cell was the highest energy density cell made by Microvast that could achieve the 500
10-minute charging goals. Steadily that number has improved as the cathode was developed, eventually
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reaching 240 Wh/kg as the base (0.33C) energy density, a 20% improvement. In Figure 4 the 10-minute
charging (6C), 1-hour discharge (1C) cycle data for prototype 240 Wh/kg cell is shown compared to the
project goals provided. Beyond 500 cycles the variance cell-to-cell does increase, but most cells achieve >
1,100 cycles before reaching end of life. These results, collected from automotive relevant 35 Ah pouch cells,
showcase that > 1,000 10-minute fast charges is feasible for cells built with advanced components such as
Microvast’s designer cathode and high thermal stability separator technology.
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Figure 4. The energy density versus cycle number of tested 10-minute charge / 1-hour discharge Li-ion cells. The project
energy density goals, average for 6-duplicate cells and the best cell tested is shown.

Pushing the limit of rechargeable lithium metal batteries. The Battery500 Consortium pushes the frontier
of advanced electrode and electrolyte materials and develops strategies to integrate materials science,
electrochemistry, and cell engineering in high-energy rechargeable lithium metal batteries to achieve more
than 400 stable cycles in prototype 350 Wh/kg pouch cells (2 Ah) (Figure 5a-b).

To decelerate the continuous side reactions in lithium metal batteries and the consumption rate of both lean
electrolytes and thin lithium in realistic pouch cells, a localized concentrated electrolyte consisting of 1.54 M
lithium bis(fluorosulfonyl)imide (LiFSI) in 1,2-dimethoxyethane (DME) and 1,1,2,2-tetrafluoroethyl-2,2,3,3-
tetrafluoropropyl ether (TTE) has been developed to minimize the formation of “dead” lithium formed during
each cycle and improve the efficiency of Li deposition/stripping. The properties of solid electrolyte interphase
layers formed between the newly developed electrolyte and lithium metal are also improved, minimizing the
amount of electrolyte irreversibly consumed during every cycle.

To accelerate mass transport, high mass-loading cathode architectures with controlled porosities are coupled
with a modified lithium anode (Figure 5c-d) to accelerate Li+ diffusion and reduce opportunities for spiky
microstructures of lithium to form during cycling. The synthesis conditions and electrochemical properties of
high nickel manganese cobalt oxide cathodes are investigated to balance capacity and cycling stability.

A new, user-friendly software for designing lithium metal batteries has been developed to derive the key cell
parameters needed to achieve the desired cell-level gravimetric and volumetric energy densities. Standard
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Battery500 coin cell testing protocols have been developed and implemented to compare and select the
materials or approaches developed within the Consortium and from collaborators. Advanced in situ and ex
situ characterization techniques—such as cryogenic electron microscopy and in situ X-ray diffraction—have
been used by the Consortium to monitor and quantify the chemical and structural changes of electrodes,
providing feedback on pouch-cell-level design.

New knowledge gathered from cell degradation mechanisms, as well as the combination of cell design,
compatible interfaces, and uniform initial pressure applied on the cell, synergistically extends the stable
cycling of 350 Wh/kg pouch cells with 80% capacity retention after 430 cycles.
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Figure 5. 350 Wh/kg pouch cells achieve more than 400 cycles in research from the Battery500 Consortium. (a) Cell-level
energy and capacity at different cycling. (b) Image of a 350 Wh/kg lithium metal pouch cell developed at PNNL. (c)
Structure of a LiNi0.6Mn0.2C00.202 cathode coated on both sides of aluminum current collector. (d) One of the lithium
anodes incorporated in the pouch cell.

Scalable synthesis of high-performance single crystalline nickel-rich cathode materials for high-energy
batteries. Ni-rich cathode is one of the most promising materials for next-generation, high-energy Li-ion
batteries, but it suffers from moisture sensitivity, side reactions, and gas generation during cycling. A single
crystalline, Ni-rich cathode may address the challenges present in its polycrystalline counterpart by reducing
phase boundaries and materials surfaces; however, synthesis of electrochemically active Ni-rich single
crystalline cathodes is challenging. Ni-rich cathodes require lower synthesis temperatures because of their
structural instability at high temperatures, opposite to the high-temperature and time-consuming calcination
process needed to grow single crystals.

Researchers at PNNL recently identified a cost-effective synthesis route to prepare high-performance single
crystalline LiNio.76Mno.14C00.102 (NMCT76). Figure 6 displays the cycling stability of NMC76 (Figure 6A-C) at
different cutoff voltages. All material evaluations were conducted using high mass-loading (> 20 mg/cm2)
single crystals in full coin cells with graphite as the anode, which is relevant for industry application. Between
2.7 and 4.2 V (vs. graphite), single crystalline NMC76 delivers 182.3 mAh/g discharge capacity at 0.1 C and
retains 86.5% of its original capacity after 200 cycles (Figure 6A). Increasing the cutoff voltage improves the
usable capacity, but cell degradation is faster (Figure 6B-C).

Figure 6D-F compares the corresponding morphologies of single crystals cycled at different cutoff voltages. If
charged to 4.2V (Fig. 1D), the entire single crystal is well maintained. Increasing the cutoff voltage to 4.3 V
results in some visible gliding lines on the crystal surfaces (Figure 6 E). When cut off at 4.4 V, single crystals
are “sliced” (Fig. 1F) in parallel. Small cracks were also discovered cycled between 2.7 and 4.4 V. Although
single crystalline NMC76 as an entire particle is still intact (Figure 6 D—F) even at high cutoff voltages, gliding
is the major mechanical degradation mode. PNNL researchers have identified a critical crystal size of 3.5 [/m,
below which gliding and microcracking will not occur, providing clues to further improve single crystal
performances in the future. This work has recently been published in Science (December 2020).
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Figure 6. Cycling stability of single crystalline NMC76 in full cells between 2.7 Vand (A) 4.2V, (B) 4.3V, and (C) 4.4 V vs.
graphite. (D), (E), and (F) are the corresponding Scanning Electron Microscope images of the cycled single crystals in (A),
(B), and (C), respectively.

High-Energy Cobalt-free Cathodes Enabled by Three-Dimensional Targeted Doping. Although there
have been numerous efforts to develop alternative cathode materials, layered lithium transition metal (TM)
oxides based on the structure of LiTMOg, such as lithium nickel (Ni)-manganese (Mn)-cobalt (Co) oxide
(NMC), remain the majority of cathode materials in commercialized lithium (Li)-ion batteries. As the cell
chemistry of NMC811 has reached initial market penetration, a grand challenge for the field is a quest for Co-
free layered cathodes to reduce the reliance on high-cost and toxic Co. However, it is well known that LiNiO,
(LNO) has high capacity but is thermally unstable at charged state and has poor cycle life. To enhance its
performance requires structure-stabilizing elements such as Co. Even though the instability of LNO seems to
render its use in a commercial cathode bleak, it shares many of the problems of currently employed NMCs that
have potential to be resolved using specialized dopants or electrolytes to target the instability of the
cathode/electrolyte interfaces.

The Low/No-cobalt project led by the University of California—Irvine with team members from Virginia
Tech, UC Berkeley, Pacific Northwest National Lab have developed a three-dimensional targeted doping
technology that can hierarchically combines surface and bulk doping with nanometer precision. The team use
computation-selected surface dopants and accurately deliver them to the surface of primary particles. They
further introduce theory-rationalized bulk dopants to the interior of the particles to further enhance oxygen
stability and inhibit the H2-H3 phase transition in Co-free oxides under high-voltage and deep-discharging
operating conditions.

As shown in Figure 7b, the team has enabled 3D targeted doping on the surfaces of the cathode particle with
nanometer precisions. In the meantime, the layered atomic structures are preserved without nearly no
secondary phase on the surfaces. More importantly, the surface/bulk Ti/Mg doping significantly improve the
cycling performance of the Co-free and extremely high-Ni chemistry (LiNio.g6 Tio.02Mg0.0202) reaching a cycle
life of 400 cycles (2.5 — 4.4 V vs. Li).
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Figure 7. (a-b) Structure and chemical imaging of the Co-free cathode particles. (c) 3D nano-electron-tomography imaging of
the dopant distribution. (d-e) The electrochemical performance of the Co-free cathode materials.

Laser-Patterned Electrodes for Enhanced Fast Charge Capability. Enabling lithium-ion batteries with
high energy densities and fast-charging capability would accelerate public acceptance of electric vehicles.
However, in order to achieve high energy densities, thick electrodes are often used, which hinder the ability to
fast-charge. This leads to a tradeoff between power and energy density.

Researchers at the University of Michigan have developed a laser patterning process to precisely manufacture
pore channels into graphite anodes. This process results in a highly ordered laser-patterned electrode (HOLE)
architecture consisting of arrays of vertical channels through the electrode thickness, as shown in Figure 8. The
pore channels facilitate rapid transport of Li-ions into the bulk electrode. As a result of the improved transport,
the concentration of Li-ions throughout the electrode volume is more homogeneous, leading to a higher
accessible capacity and lower propensity for irreversible lithium plating during fast charging.

The HOLE design was applied on industrially relevant cells (>2 Ah pouch cells) and electrode conditions (>3
mAh/cm? graphite anodes), and demonstrated significantly improved capacity retention during fast-charge
cycling, compared to conventional electrodes. After 600 fast-charge cycles, the capacity retention of the HOLE
cells is 91% at 4C (15-min) and 86% at 6C (10-min) charge rates, as shown in Figure 9. Moreover, the HOLE
design allows for cells to access >90% of the total cell capacity during fast charging. The presented
performances address both the United States Department of Energy and Advanced Battery Consortium goals
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for fast-charging batteries. The improved charging performance has been further validated by Sandia National
Laboratories.

The laser patterning approach is compatible with current lithium-ion battery manufacturing. The Michigan
team is currently working toward scale-up and integration of their HOLE technology into roll-to-roll
manufacturing lines. The HOLE architecture can enable electric-vehicle-scale batteries that can maintain long
range, while simultaneously reducing charging time.
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Figure 8. Schematic illustration of the conventional electrode and highly ordered laser-patterned electrode (HOLE) design.
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Figure 9. Capacity retention of 2.2 Ah HOLE pouch cells during long-term fast-charge cycling at 4C (15-min) and 6C (10-min)
charge rates. The DOE target is labeled in the figure as a reference. Figures reproduced with permission from K.-H. Chen et
al., Journal of Power Sources 471, 228475 (2020).

All Solid State Batteries Enabled by Multifunctional Electrolyte Materials. Solid Power is teaming with
UCSD to develop a high energy, long life, low cost, and safe ASSB, enabled by a multifunctional solid state
electrolyte (SSE). The project is enabling a scalable production of large format solid state batteries required by
the vehicle market. The large-format ASSBs will ultimately be able to deliver > 350 Wh/kg specific energy, >
1000 cycle life, and < $100/kWh cost.

The multifunctional SSE materials have been developed and met the Year 1 performance targets on both Li ion
conductivity and critical current density (CCD) against Li metal as in the Table 3 below.

Table 3: Li ion conductivity and critical current density (CCD) against Li metal

Parameters Year 1 Target Year 1 Status
Li lon Conductivity (mS/cm) 2 3.0 245
CCD (mA/cm2) 26.0 26.0
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SSE separator coating process has been developed at pilot scale. A separator slurry was prepared by mixing the
SSE powder, a binder, and a solvent by using an industrial mixer. The slurry was then cast on a carrier film or
an electrode by using a pilot scale slot-die coater. Figure 10 shows the “roll-to-roll” coated separator film and
the flexibility of a free-standing film.

Figure 10. (left) a separator film coated by a slot-die coater; (right) flexibility of the separator

A single layer pouch cell was assembled for performance demonstration in Year 1. The pouch cell contained a
NMC 622 composite cathode (at 3 mAh/cm?), a stand-alone Li metal anode, and the multifunctional SSE
separator. The cell is designed to deliver a specific energy of 300 Wh/kg if scaled to 20 Ah. When tested at C/5
- C/5, 2.8 - 4.2V, and 70°C, the cell demonstrates > 300 stable cycles as shown in Figure 11.

Cycle Life of a NMC/Li Solid State Pouch Cell
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Figure 11. Cycle life of an NMC/Li metal solid state pouch cell with the multifunctional SSE

In summary, multifunctional SSE materials have been developed with high conductivity and stability. SSE
separator films have been coated by using a roll-to-roll process. A solid state NMC-L.i pouch cell containing
the developed SSE has been assembled and tested. The cell cycle life of > 300 at 100% DOD has been
demonstrated in Year 1.

A New Electrolyte Solvent Molecule Enables Realistic Lithium Metal Batteries. Lithium (Li) metal battery
is highlighted as the next-generation battery yet still restrained by the poorly performing electrolytes.
Conventional electrolytes fall short when confronted with Li metal anodes, let alone anode-free batteries.
Previous electrolyte engineering reports improved the cycling efficiency of Li metal anodes, but fail to
simultaneously address the following key parameters for enabling practical Li metal batteries: (1) high
Coulombic efficiency (CE) across all cycles to minimize Li loss, including in the initial cycles; (2) practicality
under lean electrolyte and limited-excess Li conditions for maximized specific energy; (3) high oxidative
stability towards high-voltage cathodes; (4) reasonable salt concentration for cost-effectiveness; (5) high
boiling point and non-flammability for safety and processability.
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Zhenan Bao and Yi Cui at Stanford University and SLAC National Accelerator Laboratory report a new
electrolyte that meets all above requirements (Nature Energy, 5, 526-533, 2020). Specifically, for the first time
we synthesize fluorinated 1,4-dimethoxybutane (FDMB, Figure 12a), and pair it with 1 M lithium
bis(fluorosulfonyl)imide (LiFSI) in a single-salt, single-solvent electrolyte formulation (LiFSI/FDMB) to
enable stable, high energy-density Li metal batteries. The 1 M LiFSI/FDMB electrolyte reveals a high CE
(~99.52%) and fast activation (Li|Cu half-cell CE ramps up to >99% within 5 cycles) for Li-metal anodes. The
LiINMC full cells with limited-excess Li retain 90% capacity after 420 cycles with an average CE of 99.98%
(Figure 12b). Furthermore, anode-free Cu[NMC811 pouch cells achieve ~325 Wh kg-1 whole-cell energy
density, while Cu[NMC532 pouch cells realize ~80% capacity retention after 100 cycles, which is one of the
best performance among the state-of-the-art anode-free cells (Figure 12c). The 1 M LiFSI/FDMB electrolyte
also enables fast discharge capability in anode-free pouch cells, which magnifies its potential application in the
field of drones and wireless devices (Figure 12d). Our rational design concept for new electrolyte solvents
provides a promising path to high-energy, practical Li metal batteries and anode-free pouch cells with high

cyclability and processability.
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Figure 12. (a) Molecular structure of FDMB; (b-d) Cycling performance of practical Li metal batteries and industrial anode-

free pouch cells.

Metal Coated Graphite Anodes Improve Capacity Retention Under Extreme Fast Charging Conditions.
The development of lithium ion (Li-ion) batteries that can be charged in 10 — 15 minutes without sacrificing
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driving range, cost, or cycle life is critical for the increased adoption of electric vehicles by consumers. The
primary technical barrier preventing repetitive extreme fast charging (XFC) of Li-ion batteries is deposition of
electrochemically isolated lithium metal on the graphite anode resulting in capacity degradation. Researchers
at Stony Brook University (SBU) and Brookhaven National Laboratory (BNL) have recently invented a new
approach for suppressing lithium metal deposition on the graphite anode under XFC conditions. They
deliberately modify the anodes with metallic nanoscale surface films with high overpotentials unfavorable for
Li metal nucleation (Figure 13). In a recently published paper (https://dx.doi.org/10.1149/1945-7111/abcaba)
the effectiveness of metallic surface coatings with different areal loadings at reducing capacity fade under XFC
was explored. Batteries incorporating graphite electrodes with high metal film loadings exhibited an
improvement in capacity retention after 500 fast (10-minute) charge cycles of ~9% compared to uncoated
anodes (Figure 14). Li metal deposition quantified by X-ray diffraction supported these findings, with higher
loading metal films exhibiting enhanced Li plating suppression compared to lower loading films.
Transmission electron microscopy imaging revealed that the higher loading films have more complete
coverage of the graphite surface, permitting more effective overpotential control. The results from SBU and
BNL highlight the use of nanoscale functional surface coatings for prevention of Li plating during battery fast
charging. Future research efforts are centered on demonstrating that the metal film coated electrodes can be
fabricated using a cost-effective, scalable approach that preserves the functional benefits observed for
laboratory scale fabricated films.
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Figure 13. Schematic representation of the approach for suppressing lithium metal plating during high charging current:
nanoscale metallic films applied to the upper surfaces of battery anodes increase the overpotential for the Li nucleation.
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Figure 14. (a) 500 cycle capacity retention and (b) areal capacity for Li-ion pouch cells with uncoated (control) and
nanoscale metal coated electrodes cycled under 10 minute charge rate.

Determination of State-of-Charge Gradients in Thick 811 Cathode Films. One generally applicable route
for enhancing the energy density of Li-ion batteries (thereby increasing the range of electric vehicles) is the use
of thicker cathode films. However, the specific capacity and rate performance of thick electrodes is
substandard due to limitations in the transport of ions and/or electrons perpendicular to the plane of the film. If
the precise origin of these transport limitations can be understood, it will be possible to rationally design
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thicker cathodes that deliver higher energy densities than present battery cathodes while still meeting the other
performance demands of electric vehicles. High energy synchrotron X-ray diffraction methods were used at
BNL to study the top-to-bottom inhomogeneity in the state of charge (SOC) of operating battery cathode films.
The height of the x-ray beam was reduced to 1/50 of a millimeter, allowing thick cathode films to be virtually
‘sliced’ into about ten layers (much like a stack of postage stamps), enabling the performance of each layer to
within the whole to be independently followed during battery testing. The ability of the X-ray techniques to
accurately measure the local SOC in a layer was confirmed by the agreement in the average response measured
across all layers by X-rays (cyan line, Figure 15) to that measured conventionally using the potentiostat
controlling battery cycling (black line). The next step was to compare the response from the back of the
cathode layer (where the electrical contact with the current collector is made) to that of the front of the cathode
(nearest to the anode). While layers in the front of the cathode behaved in the expected manner (Figure 16), it
was observed that the back layers could store only about half of the capacity of the front of the cathode after a
normal charging cycle, suggesting that the primary transport limitation is ionic, not electronic. Furthermore, it
was observed that when the discharge of the battery starts (time = 12 hrs, green arrow), the back cathode layers
unexpectedly continue to charge for another hour, and in fact increase their SOC faster than at any point during
the charging of the battery. The spatially resolved diagnostic methods demonstrated here are being used to

parameterize electrochemical models of cathodes that can predict how battery design modifications will affect
battery performance.
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Figure 15. Comparison of the battery state of charge calculated from X-ray diffraction measurements (cyan) with that
recorded using the potentiostat driving battery cycling (black)
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Figure 16. Comparison of the battery state of charge for 4 layers at the top of the cathode (red-orange) and 4 layers at the
back of the cathode (purple-blue).

Protocol for Early Assessment of Calendar Life in Silicon Cells. The development of a short-timeframe
calendar lifetime testing protocol could enable much faster feedback and development of new materials to
improve the calendar lifetimes of next generation batteries. Calendar life testing of battery cells is traditionally
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carried out by aging cells under open-circuit conditions for multi-month-long timeframes. These long
timeframes required are a major issue and the slow tests limit the feedback loop speed and efficiency.

The new electrochemical test protocol provides a mechanism for the development of silicon (Si) electrodes that
researchers and early stage developers can use to assess the progress in the development of silicon based
negative electrodes within a short timeframe of two weeks. This test makes use of a constant voltage hold in a
lithium (Li)-excess supplied full cell containing a lithium iron phosphate counter electrode with a flat voltage
output. The current passed during the voltage hold is a measure of the reaction rate of lithium consumption at
the silicon anode through parasitic and irreversible electrochemical reactions.

Figure 17 shows the current decays of three different Si test electrodes and a graphite baseline electrode. The
normalization of the current data to the reversible capacity of each electrode is important because the resulting
units of Amps/Ah indicate the rate at which each electrode is losing reversible capacity due to Li+
consumption at the solid electrolyte interphase or SEI. If the normalized current measured from a Si test
electrode at the end of the 180 hour voltage hold is distinguishably higher than a baseline electrode, further
analysis is not needed, as the electrode’s SEI is clearly not sufficiently stable. This is the case for each of the Si
test electrodes shown in Figure 17, thus showing the effectiveness of this simple qualitative comparison for the
initial screening of Si test electrodes.

Our methodology is based on using voltage holds to measure the rate of parasitic reactions that irreversibly
trap Li+ at the SEI. This approach has the advantage of recording real-time rates of side reactions, providing
information about the time-dependence of such processes and potentially enabling extrapolation of behaviors
observed in relatively short duration experiments. Indeed a numerical model of the parabolic-like decay of the
current is under validation using long-term voltage hold measurements. The long-term validation test will
allow an accurate fit traced back to 180 h of Si calendar life testing. Consequently, the numerical fit model is
used to project the losses of Li+ inventory due to parasitic reactions during long-term storage.
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Figure 17. Current decay versus time during voltage holds of several different Si test electrodes and a graphite baseline
electrode.

Linking Electrode Particle Architecture to Battery Performance. Increased demand for electric vehicles
necessitates new solutions to achieve high-energy, fast-charge-capable lithium-ion batteries. At present, the
performance of battery electrodes is mostly determined from electrochemical measurements, with no insight
how electrochemical performance relates to the 3D architecture of the individual particles that make up the
electrode. To date, techniques to create the link between sub-particle architectures and electrochemical
performance have not been developed, which has hindered efforts to create structure-function relationships and
guide new designs.

Under DOE’s Extreme Fast Charge program (XCEL), the National Renewable Energy Laboratory (NREL) has
developed a process to characterize the architecture of single electrode particles in 3D. This characterization
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considers properties that influence how fast the electrode can charge or discharge while minimizing
phenomena that lead to degradation. Most cathodes in commercial lithium-ion batteries consist of particles
with polycrystalline grain architectures (Figure 18a,b). Within the particle, individual grains generally have
mismatched crystal orientations that increase the path lithium must take to fully saturate the particle during
charging. Each individual grain swells and contracts during charging and discharging, which leads to
mechanical strain, cracking, and capacity loss during operation.

NREL recently developed the application of an electron diffraction technique that maps the polycrystalline
architecture of single cathode particles in 3D (Figure 18c). This is the first time that the architecture of a single
particle has been revealed in such detail and presents opportunities to create a link between the architecture of
particles and the electrochemical performance of batteries.

Using the 3D datasets, NREL multi-physics models compare inefficiencies in how lithium moves throughout
various particle architectures. Coupled with solid mechanics, the models identify where mechanical strain
accumulates and predict the tendency of the particle to degrade (Figure 18d).

This capability will clarify opportunities to improve battery performance and guide novel manufacturing routes
that synthesize particles with larger/oriented grain architectures more favorable for fast charging and long life.
Together with 3D simulation models, the electron diffraction measurement facilitates fair comparison and
benchmarking of next-generation electrode particle designs.

3D model showing
mechanical damage

Figure 18. (a) Image of a nickel-manganese-cobalt (NMC) cathode particle. (b) Cross-section electron-diffraction image
shows individual grains and their crystal orientations. (c) 3D geometry of NMC particle with anisotropic grains. (d) Multi-
physics model reveals regions susceptible to damage.

Development of Si-based High-Capacity Anodes for Next Generation of Li-lon Batteries. Porous Si has
been widely used to mitigate pulverization of Si particles during battery cycling. However, the large surface
area of these Si materials may lead to severe reactions between lithiated Si and electrolytes. These reactions
will result in continuous growth of the solid electrolyte interphase (SEI) layer, as well as short cycle and
calendar battery lives. Therefore, minimizing the surface area of Si and finding a stable electrolyte are critical
for the cycling and calendar lives of Si-based lithium ion batteries (Si-LIBs).

Researchers from the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) have
developed a highly stable Si anode based on micron-sized porous Si with heterogeneous coating layers. Porous

Batteries Program Overview 19



Batteries

Si is first prepared by thermal decomposition of SiO and subsequent etching with HF solution. The as-prepared
porous Si has a large surface area of ~1000 m? g and a large pore volume of 1.10 cc g* with nano-sized pores
(~3.7 nm in diameter). For the homogeneous coating process, petroleum pitch is dissolved in toluene; the
resulting pitch/toluene solution is impregnated into the porous Si under the vacuum. As shown in Figure 193,
porous Si has an average particle size of ~5 um, which is similar to those of pristine porous Si. After
carbonization of pitch at 700 °C under an Ar atmosphere, the carbon content in the composite is ~45%-48%.
Using porous Si-C, Si||[NMC532 coin cells have demonstrated excellent electrochemical performances with a
baseline electrolyte (1.2 M LiPFg in EC/EMC [3/7 in weight] + 10% FEC). The cell retains 78% capacity after
400 cycles, with a stabilized 99.9% coulombic efficiency. The superior stability of the porous Si-C anode can
be attributed to (1) mitigated volume expansion with sealed porosity; (2) improved overall conductivity of the
composite; and (3) minimized electrolyte penetration into the porous Si.

To further improve the cycle life of Si-LIBs, PNNL researchers have developed several novel electrolytes
based on the concept of the localized high-concentration electrolyte (LHCE). These electrolytes result in a
significantly improved cycle life of Si||[NMC532 cells (Figure 19b). The cycle life of the cells can increase
more than 50% when PNNL’s LHCEs (LiFSI-DMC-BTFE [molar ratio = 0.51:1.1:2.2] + 1.0 wt% VC + 5 wt%
FEC) are used compared to that produced using baseline electrolytes. Thus, porous Si and LHCE electrolytes
developed at PNNL have great potential to enable the next generation of high-energy-density LIBs.
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Figure 19. (a) Cycling stability of Si| [NMC622 cells using a porous Si anode and baseline electrolytes. The insert shows the
schematic structure and scanning electron microscope image of porous Si. (b) Cycling stability of Si| [INMC532 cells using a
porous Si anode and different electrolytes.

In-Operando Detection of Lithium Plating During Fast Charge with Rapid EIS and Differential
Coulometry. Fast charging of lithium ion batteries is a critical enabler for mass EV adoption. Sandia National
Laboratories (SNL) has been working with the University of Michigan to develop graphite anodes with novel
3D structures that facilitate faster charging while avoiding lithium plating, a main danger of unaided fast
charging. Last year, SNL used its unique high precision cycling and rapid electrochemical impedance
spectroscopy (EIS) capabilities to identify distinct indicators of lithium plating at increased charge rates and
demonstrate the ability of improved anodes to withstand fast charge and resist lithium plating.
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Figure 20 shows dQ/dV plots at increasing rates for cells with graphite anodes. At low charge rates (<1C, 1
hour charge), peaks from 3.5-3.8V indicate normal charging behavior. At higher rates (> 3C; 20 min charge), a
second growing peak at 4.1V indicates a new process occurring, hypothesized to be lithium plating. Rapid EIS
collected during fast charge operation is presented in Figure 21. The impedance of the graphite anode cell
increased with cycle number and charge current, particularly at higher voltages (>4V), while the impedance of
the 3D anode structure cell remained un-changed through the high rate cycles. Both techniques demonstrated
the ability of the 3D anode structure to operate under fast charge conditions while resisting lithium plating.

The dQ/dV and rapid EIS lead us to in-operando identification of lithium plating behavior, including at what
current it occurred and to what degree. This powerful tool was used to compare unimproved anodes similar to
present day cells, with cells containing 3D anode structures.
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Figure 20. Differential Coulometry (dQ/dV) of a Li-ion cell with a graphite anode.
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Figure 21. Rapid EIS during fast charge of a Li-ion cells with (a) graphite anode, and (b) 3D anode structure.

Battery Safety Testing. The Battery Abuse Testing Laboratory (BATLab) at Sandia National Laboratories has
historically collected accelerating rate calorimetry (ARC) data to compare the safety performance of new and
existing active materials. However, calorimetry methods such as this present an opportunity to explore the
energetic behavior of thermal runaway due to a wide range of factors. A recent study compared cell capacity,
energy density, sate of charge, and cathode chemistry to observe how they impact the severity of thermal
runaway. This analysis covers four cathode chemistries, multiple form factors, and stored energy ranging from
3.5t0 122 Wh.

In a practical scenario, thermal runaway occurs when the self-heating rate of a battery failure event exceeds the
heat loss rate in its current environment or installation. The logical next step is that increasing energy density
will lead to increased consequences of thermal runaway occurring. With exponentially faster heat release at
higher energy density it will be easier for the thermal runaway to exceed any heat dissipation to the
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environment, likely leading to more severe consequences in terms of further damage or cascading failure.
Figure 22 illustrates this in the data analyzed, showing exponentially increasing peak heating rates until the
very highest effective specific energy. This would be considered intuitive if discussing chemical energy
storage, but is a concept often avoided when considering electrochemical energy. As new technologies are

developed with increased energy in mind, increasing attention will need to be paid to designing mitigation into
systems that minimize consequences.

Similar comparisons of the total heat released (enthalpy of runaway in Figure 23) shows a linear tie to cell
capacity. This shows that even at lower specific energies and states of charge there may be significant energy
available to contribute to a failure event. This adds an additional consideration for very large systems or bulk
storage, particularly when individual cells are well insulated and may be able appreciably self-heat.
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Figure 23. Cells in Figure 1 comparing the enthalpy of runaway as a function of cell capacity.

Phase 11 Winners for the Lithium-lon Battery Recycling Prize Announced: As part of its efforts to
facilitate a well-distributed, efficient, and profitable infrastructure for the recycling of lithium-ion batteries and
to incentivize American entrepreneurs to find innovative solutions to challenges associated with collection,
storage, and transportation of spent or discarded lithium-ion batteries, DOE earlier established a $5.5 Million
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Battery Recycling Prize. Its goal is to develop innovative business and technology strategies to potentially
capture 90% of all lithium-based battery technologies (consumer electronics, stationary, and transportation
applications) and to make collecting, sorting, storing, and transporting lithium-based batteries safe, efficient,
and profitable. The Prize spans three phases. In each phase, winners are determined by a panel of expert judges
evaluating concepts based on feasibility, cost to implement, and potential impact. Earlier, in Phase | of the
Prize, after review by industry experts and a Federal Consensus Panel, DOE had determined that 15
submissions adequately met the criteria for innovativeness, impact, feasibility, and technical approach outlined
in the Prize Rules. During FY 20, the Prize Administrators successfully launched Phase II, entitled ‘“Prototype
and Partnering”, organizing an in-person networking opportunity in partnership with the National Alliance for
Advanced Transportation Batteries (NAATBatt) National Conference in February 2020. TFourteen
submissions were received in Phase 11 of the Prize to further the development of the winning concepts from
Phase I. Expert judges reviewed the Phase 11 Final Submissions in late September and seven winners were
announced in December advancing the winners (see Table 4) to the third and final phase of the Prize.

Table 4: Lithium-ion battery recycling prize Phase Il winners

Team (Location) Project Title
Li Industries (Blacksburg, VA) Smart Battery Sorting System
OnTo Technologies (Bend, OR) DISC: Deactivate, Identify, Sort, Cut
Powering the Future (Glendale, WI) Powering the Future
Renewance (Chicago, IL) Renewance Connect
Smartville (San Diego, CA) Smartville Battery Reuse & Recycling HUB System
Team Portables (Seattle, WA) Reward to Recycle - Closing the Loop on Portables

Titan Advanced Energy Solutions (Sommerville, MA)  Battago - Battery Market Intelligence Platform
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I Advance EV Battery Development

.1 USABC Battery Development & Materials R&D

.L1.A Development of High Performance Li-ion Cell Technology for EV Applications
(Farasis Energy)

Madhuri Thakur, Principal Investigator
Farasis Energy

21363 Cabot Blvd, Hayward, CA 94545
Hayward, CA 94545

E-mail: mthakur@farasis.com

Brian Cunningham, DOE Technology Development Manager
U.S. Department of Energy
E-mail: Brian.Cunningham@ee.doe.gov

Start Date: February 1, 2017 End Date: December 31, 2020
Total Project Cost: $5,900,000 DOE share: $2,950,000 Non-DOE share: $2,950,000

Project Introduction

The goal of this project is to develop a high energy density, low-cost Li-ion cell technology that meets the
USABC Goals for Advanced Batteries for EV’s. Farasis leads the development effort which will bring
together technical contributions from a large number of leaders in the Li-ion technology industry including
subcontractors Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL),
material suppliers for anode, cathode, electrolyte and separator etc. The project will build on technology
development efforts at Farasis and our collaborators that have been supported, in some cases, through previous
Department of Energy sponsored projects. The development effort will be iterative, with an intermediate
Go/No Go Milestone based on cell performance goals and progress tracked against the USABC Battery goals.
The main objective of this program is to develop cell technology capable of providing 350 Wh/kg after 1000
cycles at a cost target of $100/kWh. The beginning of life (BOL) target for the cell level-specific energy is ~
400 Wh/kg, which is approximately 12% higher than the energy needed to meet the USABC end of life (EOL)
cell level targets. To achieve the desired target of 350Wh/Kg the anode needs to be pre-lithiated with a
capacity > 1500mAh/g and cathode with a capacity higher than 220mAh/g. The pre-lithiation of the anode
done by adding sacrificial lithium source into the cathode. For the past two years, we try to optimize the
amount of sacrificial lithium source added to the cathode. The addition of sacrificial lithium source (SLS)
leads to a decrease in the capacity of the cathode and increase the impedance of the cells. To overcome all the
problems associated with the Li source requires more work on the stabilization of this material, and would be
challenging to implement in the required time frame of the program. During the Go/No Go Milestone based on
cell performance, a change in the chemistry of was done to meet the deliverable energy target of 330Wh/Kg.
The final deliverable must achieve specific energy of 330Wh/Kg at the beginning of life without pre-lithiation
at a cost target of $100/ kwWh. The main objective of this project is to develop a cell technology capable of
providing 280 Wh/kg after 1000 cycles at the end-of-life. The specific energy of the cell at the beginning of
life will be approximately 15% higher than the energy needed to achieve the cell level target for this program..

Objectives

o Develop an EV cell technology capable of providing 280 Wh/kg after 1000 cycles at a cost target of
$0.10/Wh.

o Develop high capacity cathode and Si anode materials to meet USABC EV goals through collaborative
development efforts with partner organizations.

24 USABC Battery Development & Materials R&D


mailto:mthakur@farasis.com
mailto:Brian.Cunningham@ee.doe.gov

FY 2020 Annual Progress Report

o Develop and optimize electrolyte and conductive additives to stabilize Ni rich cathode and improve the
safety

o Optimization of negative electrode formulation for maximum energy density and cycle life, calendar life,
power, safety, and low/high temperature cell requirements.

e Investigate effect of Si incorporation on conductivity and mechanical stability of negative electrode
relative to graphite electrodes.

Approach

Phase | of the project, which lasted for approximately 20 months, was focused on the development and
characterization of materials and optimization of electrolyte technology. Initial sets of small cells (ca. 1-2 Ah)
was used to evaluate different positive/negative electrode composites, material combinations and for
electrolyte development in an iterative manner. During this phase, Farasis optimize the electrode compositions
of anode and cathode in half coin cell as well as in single and double layer pouch cells. The materials down-
selected based on these test result for the Genl deliverable cells. End of the phasel, the cells were built with a
capacity of 41.5Ah and delivered to the National Labs. During this phase, we also work on the pre-lithiation of
the anode by adding sacrificial lithium source into the cathode. We try to optimize the addition of the
sacrificial lithium source to the cathode. We know that the disadvantage of adding the sacrificial lithium source
(SLS) leads to a decrease in the capacity of cathode material. But during the study, we have seen that it also
leads to an increase in the impedance of the cells. During the Go/No Go Milestone based on cell performance,
a change in the chemistry done to meet the deliverable energy target of 330Wh/Kg.

Phase Il of the project is scheduled for approximately 20 months and focus on down selecting the chemistry to
achieve an energy target of 330Wh/Kg. To achieve the targeted energy of 330Wh/Kg without pre-lithiation of
an anode required a high 1st cycle efficiency Si material. During this phase, we worked on high-efficiency Si
material as well as on Ni-rich cathode materials from different suppliers. The materials evaluated in the coin
cell as well as in single and double layer pouch cells. The down-selected optimized chemistry transferred to
deliverable cells (see Table I.1.A.1). Phase Il of the program will also include testing to guide system
development in future applications; these tests will characterize cells in small groups to efficiently evaluate
their behaviour on a large scale where thermal management, cycling-induced gradients, and failure isolation
become important.

Table I.1.A.1 Phase Il Down-selected cell information.

Electrode Chemistry Electrolyte Formulation Electrodes and Cell
e Stabilized Ni-rich NCM e Fluorinated e  Optimized, high density, composite
cathode with a capacity of solvents active material formulations
(220-240 mAh/g) e Stabilizing e Low reactivity conductive additives
e Silicon Composites (400- additive/ salts e Advanced binder formulations
800 mAh/g) e Advanced separators: Coatings, high

voltage stability
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Results

Genl: Technology Development: The Gen 1 cells build with the down-select chemistry of Ni-rich and high
voltage NCM as the cathode and low-efficiency SiO/C composite as an anode. The Genl chemistry down-
selected based on data calculated from the single and double layers pouch cells built during the phasel of the
program. Gen1 cells were built-in for the capacity of 35Ah with Ni-rich cathode and High voltage NCM523.
Based on the test results and learning from these cells, we finalize the Genl deliverable chemistry. Figure
1.1.A.1 show the dynamic stress testing (DST) cycling data for the Genl cells (35Ah & 41.5 Ah). Figure
1.1.A.2 shows the calendar life capacity retention and DCIR for Ni-rich cathode and SiO/C anode for the Genl
cells.
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Figure .1.A.1 the DST Cycle life for Gen1 Cells at 35Ah and 40Ah at 30°C
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Figure 1.1.A.2 Calendar life capacity retention for the Gen 1 (40Ah) deliverable chemistry & 4b) DCIR
Gen2 Deliverable

To achieve the specific energy of 330Wh/Kg needed an electrode (cathode capacity >200mAh/g and an anode
capacity >450mAh/g). To achieve the targeted energy density need silicon material with higher coulombic
efficiency to avoid the pre-lithiation of the anode. The 1st cycle efficiency of 100% silicon material needs to be
more than 85%. Depending upon the capacity of the Ni-rich cathode, an anode needs the optimization. During
the optimization, we built the cell for the cathode capacity ranging from 200-220mAh/g with different amount
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of the silicon. Figure 1.1.A.3 shows the cycle life for 10%-22% Si with a cathode having a capacity of
220mAh/g and cell-specific capacity, of 325 and 328Wh/Kg in the deliverable form factor.
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Figure I.1.A.3 shows the capacity retention of ~10%-22% %Si with Ni rich cathode

The high-efficiency Si anode of capacity ranging from 4.7-4.75mAh/cm2 was tested with Gen1 cathode in a
double layer pouch cell for the targeted energy density of 330Wh/Kg in 80-87Ah form factor cells. Figure

1.1.A.4 shows the cycle life and capacity of the double layers pouch cells. The final deliverable cells have the
same chemistry.
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Figure .1.A.4 shows the initial result for high efficiency anode with Gen1 cathode in double layer pouch cell
Conclusions

Farasis has shown more than 1000 cycle before reaching 80% capacity retention in 41.5Ah Gen1 cells with a
specific energy of 270Wh/Kg. Farasis delivered 41.5Ah Genl pouch cells to National Labs for testing, abuse
testing and thermal testing (INL, SNL and NREL). The Gen2 cells built for the energy density of ~ 330Wh/Kg
are getting delivered at National Lab by November 2020.
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Project Introduction

As global usage of electric vehicles steadily increases, so does the power/energy requirement to meet
mainstream needs. Performance trajectories of traditional lithium-ion technology, despite an annual 3%-5%
improvement in energy density since inception, suggest that long-term electric vehicle needs will not be met
without an evolution beyond traditional energy storage materials (i.e. graphitic anodes). NanoGraf
Corporation has developed a novel Si-based, negative-electrode material which can enable a quantum leap in
battery energy and power density, and significantly impact battery weight and run-times that burden today’s
electric vehicles.

Objectives

The project entitled “Rapid Commercialization of High Energy Anode Materials™ has been established with
the aim of extending, benchmarking, and demonstrating the performance of NanoGraf’s advanced silicon-
based anode materials in battery form factors and designs relevant for electric vehicle applications.

Approach

NanoGraf Corporation has demonstrated a novel high energy density (>1,000 mAh/g) Si-based negative-
electrode materials technology with a long-term potential to replace graphitic-based anodes in lithium-ion
batteries. NanoGraf’s technology uses a proprietary silicon alloy-graphene material architecture to achieve: i)
category-leading performance and ii) solutions to long-standing Si anode technical hurdles. The proprietary
combination of silicon-based alloys and a flexible 3D graphene network helps to stabilize the active material
during charge and discharge by providing an interfacial barrier between the active material and the electrolyte
which can accommodate large volumetric changes through a laminar graphene sliding mechanism. The 3D
graphene-silicon architecture results in a minimization of capacity losses due to electrical disconnection,
significantly improved active utilization (mAh/g), and partial stabilization of the SEI interface with a flexible
physical barrier between electrolyte and active material (Figure 1.1.B.1).
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Electrical Disconnection ﬁ
Unstable SEI @

Figure I.1.B.1 Si anode failure mechanisms (left), NanoGraf graphene-wrapped silicon anode architecture (right).

Cycle Life Degradation

NanoGraf has made continuous improvements against key USABC advanced electrode metrics over time, and
has demonstrated an attractive trajectory towards USABC advanced electrode goals. The goal of the program
is the advancement and commercialization of advanced silicon-based active materials for high energy and high
power EV batteries. Specifically, the program aims to demonstrate that NanoGraf technologies can exceed
USABC electric vehicle performance targets in USABC-recognized form factors, be produced at-scale by
commercially viable methods and reach USABC cost targets at scale. To this end, a series of tasks have been
developed to address the core technology gaps and their associated barriers: Task 1: Electroactive Synthetic
Design & Optimization, 2. Electroactive Barrier Design & Optimization, 3. Anode/Cathode/Electrolyte/Binder
Design Optimization, 4. Material Production & Process Development, 5. System Integration & Cell Production
and 6. Electrochemical & Safety Testing.

NanoGraf has two strategic partners for this program. A123 Systems works with NanoGraf on Tasks 5 and 6
for the cell deliverables and PPG works with NanoGraf on Task 3 to assist with electrode design and
optimization.

Results

Throughout FY 20, NanoGraf made significant progress in numerous development pathways including active
material development (Task 1 & 2), electrode & cell design (Task 3), materials production (Task 4), and
prototype performance (Task 5 & 6). Select project advancements have been highlighted below:

Active Material Development: In FY20, NanoGraf focused on different experimental designs to improve the
stability of SiOx-based anode materials by optimizing the active particle core as well as surface coatings to
stabilize the SEI. For the electroactive particle core, NanoGraf has completed investigation of the SiOx
microstructure to optimize the overall cycling stability and improve the energy density of the graphene-
wrapped electroactive components. As shown in Figure 1.1.B.2, optimized microstructural treatments (MT)
materials (MT2-4) are compared against the previous best-performing MT1 material that was previously
developed. As can be seen in Figure 1.1.B.2C, improved MT2 and MT3 samples provide >5% energy density
increase with similar cycling life in a pure anode material format, compared to MT1. Upon extended cycling
(Figure 1.1.B.2D), sample MT2 was determined to be the optimal material due to its combination of high
energy and good capacity retention characteristics.
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Figure 1.1.B.2 A) 1st cycle Coulombic efficiency for microstructural treatment (MTx) samples B) half-cell coin cell
electrochemical cycling of MTx samples C) full cell coin-cell electrochemical cycling of MTx samples in pure silicon anode
formulation (no graphite blending) and D) extended full-cell cycling for MT1-MT6 samples in pure silicon anode formulation
showing divergence in extended cycling.

In addition to the progress on the particle core, NanoGraf also focused on developing novel surface barrier
coatings that could further improve the electrochemical performance of the SiOx material. These novel
surface barriers were investigated with the intent of providing more stable SEIs and increased energy density
to the optimized MTx core developed previously (see Figure 1.1.B.3).

Craphene —___, = ProcessA —» ~nealing -, A-2 A-3
/\ SiOx Material
(MT2) Conditions
_ ProcessB — — B-1 B-2 B-3
~10nm thickness

(#1-3)
Barrier Coating

Figure 1.1.B.3 (Left) Schematic of the novel surface barrier coating on top of the SiOx core particle, with graphene-coating
applied to the exterior of the barrier-coated particle. (Right) Simplified flow diagram illustrating the processing (e.g. A-E) and
annealing conditions (e.g. #1-3) to develop the barrier coating for the MT2 SiOx material.

These barrier coatings were investigated via various synthetic processes and annealing conditions to improve
the coating coverage and decrease resistance. All barriers developed were both air- and water-stable coatings
that are compatible with existing aqueous processing conditions. In addition, graphene coatings were still
applied to ensure good electrical connectivity and cycle life.
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As shown in Figure 1.1.B.4 below, these novel barriers have resulted in significant improvement in the
performance of the MT2 material. By optimizing the synthetic conditions, NanoGraf was able to apply the
barrier coatings to result in an improvement in the cycling stability of the material as well as reduce the
irreversible capacity loss. As seen below (Figure 1.1.B.4C, D), in some instances the barrier coating could
enable an increase of the 1% cycle efficiency 5% compared to the MT2 control. In addition, the increased
efficiency was able to translate to an increased energy density of 7% with identical cycle life compared to the
MT2 control material (Figure 1.1.B.4B).
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Figure 1.1.B.4 (A) Half-cell coin cell cycle life results for various barrier materials in pure silicon anode formulation. (B)
Corresponding full-cell coin cell cycle life results for sample A-3 and the MT2 sample (Control). C) First Cycle Efficiency (FCE)
values for different synthetic conditions. D) Materials electrochemical properties for various synthetic conditions.

Electrode & Cell Design: In addition to the improvements made to the active material, there were also
substantial developments made to other cell components, especially the anode and cathode binder materials. In
FY20, PPG focused on developing improved anode and cathode binders to enable good electrode adhesion
with minimal binder content to decrease inactive components and maximize energy density. On the cathode
size, PPG has developed a suite of R&D binders that offer competitive performance compared to the
conventional PVDF/NMP system. As shown in Figure 1.1.B.5, PPG’s R&D binders are capable of providing
high electrode peel strength compared to conventional PVDF materials, even at high areal loadings of 4
mAh/cm? and 5 mAh/cm?. Additionally, these R&D binders provided very similar electrochemical
performance, similar rheological properties, and improved slurry stability for NMC811 slurries compared to
PVDF/NMP (Figure 1.1.B.6).
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Figure 1.1.B.6 (A) Viscosity change for NMC811 slurries using Binder C and PVDF/NMP as a binder. (B) Electrochemical
performance of high-loading NMC811 electrodes.

PPG also commenced development of an anode binder material with promising initial results. As shown in

Figure 1.1.B.7, PPG’s SiA-1 binder offers improved half-cell cycling stability and better Coulombic efficiency
compared to a standard LiPAA (lithiated polyacrylic acid).
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Figure 1.1.B.7 (A) Capacity retention and (B) Coulombic efficiency plots of half-cell coin cells in pure anode formulation.
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Prototype Performance: In addition to the improvements made to the electrochemically-active silicon anode
material and the electrode binder materials, NanoGraf was also able to conduct 1 Ah prototype cell
performance with A123 Systems. Since many of the demonstrated materials developments were accomplished

USABC Battery Development & Materials R&D

33



Batteries

in parallel, much of the exhibited material improvements in the core and the barrier materials in this section
have not yet been electrochemically tested in prototype cells. Therefore, in FY20, NanoGraf and A123
Systems were able to construct 1 Ah prototype cells utilizing the optimized MT2 material (without the barrier
coatings or improved PPG binders). A123 Systems scaled the design that was established between NanoGraf
and A123 from single-layer pouch (SLP) cells to small format pouch cells. The theoretical capacity of the
cells based on design is 1.13 Ah. These anode electrodes were formulated for a silicon-dominant composition
(75wt% silicon material, 10wt% graphite, 5wt% conductor 10wt% binder). Anode and cathode electrodes
exhibited good physical properties including wet and dry adhesion, uniform coat weight, good resistance, and
passed all mandrel tests. A123 Systems was able to construct >40 1 Ah cells, for which 15 cells were
internally tested at A123 and 24 cells were externally validated by Argonne National Laboratory.

Electrochemical data obtained by A123 Systems confirms that cells were very consistent with very little cell-
to-cell variation. Cells were tested at room temperature at two different voltage ranges — 4.2-3.0V and 4.2-
3.25V to determine the impact on overall cycle performance. Additionally, one set of cells was cycled at a
higher C-rate of 1C rather than the standard 0.5C for the other two data sets. As can be seen in Figure 1.1.B.8
below, cells cycled under the 4.2-3.25V range were able to achieve ~800 cycles to 80% capacity retention.
Similarly, cells cycled at the higher 1C rate also achieved the similar cycle life to the cells cycled at 0.5C.
However, increasing the voltage window to 4.2-3.0V led to a decrease in cycle life, with a ~250-300 cycles to
80% capacity retention.
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Figure 1.1.B.8 Electrochemical cycling peformance for 1 Ah small format pouch cell samples utilizing NanoGraf MT2 anode
and NCA cathode. Anode electrodes contained 75wt% MT2 silicon material, 10wt% graphite, 5% conductor, and 10wt%
binder.

From the electrochemical testing results and the subsequent post-mortem teardown performed, NanoGraf and
A123 Systems have investigated the main drivers of capacity fade, especially for the 4.2-3.0V window tests.
Key learnings from the analytic tests have been used to inform and refine the cell design for the subsequent
prototype build scheduled to occur in FY21.

Conclusions

NanoGraf has concluded the 16" month of the 36-month long project. The 1 Ah cell deliverables were
delivered to Argonne National Laboratory in Q3 2020 for independent verification. Significant improved to
the underlying silicon material has been made over FY20 in addition to the advancements that were able to be
integrated into the initial 1 Ah cell build. Subsequent cells builds that will integrate the remaining
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improvements and developments shown in this Progress Report are scheduled to occur in Q1 2021.
Additionally, NanoGraf will investigate various cell form factors to understand its impact on electrochemical
performance. A major milestone was achieved in the improved cycle life of the SiOx materials via structural
changes and improved barrier properties.

Several challenges need to be surmounted over the coming year, including consistent improvements to the
energy, cycle life, calendar life, scale and cost of the NanoGraf material in order to successfully surpass
USABC key metrics.

NanoGraf has demonstrated a cadence of innovation and product development throughout the project, and
looks optimistically towards demonstration of viable performance in commercially relevant EV cells.

Key Publications

1. ”High-Energy Anode Material Development for Lithium-lon Batteries”, BAT240 Hayner 2020 p,
US DOE Vehicle Technologies Program Annual Merit Review, AMR, 2020.
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Project Introduction

In order to reduce our dependence on fossil fuels and decrease greenhouse gas emissions, electric vehicles
(EVs) have received intense attention as a possible solution. Electrification of automobiles is gaining
momentum with the main barrier preventing widespread adoption being the lack of available low cost, high
energy, fast-charging and safe energy storage solutions. Lithium ion batteries (LIBs) are presently the best
energy storage solution used in current and upcoming EVs. Further improvements to the performance of LIBs
by integrating high capacity active materials, novel passive components and unique cell designs will be critical
for the success and mass adoption of EVs.

This project is developing novel electrolyte formulations, optimized cell designs and a scalable pre-lithiation
solution that enables the use of high capacity silicon oxide anodes that will result in lithium-ion batteries
capable of meeting the Low-Cost and Fast-Charge (LC/FC) USABC goals for advanced EV batteries in CY
2023. High specific capacity anodes containing high amounts of active silicon (>50%), Nickle-rich Ni-Co-Mn
(NCM) cathodes and uniquely tailored electrolyte formulations will be integrated in large capacity (10-60 Ah)
pouch cells targeting Fast-Charge and Low-Cost energy solutions. At the conclusion of the program, Zenlabs
aims to demonstrate Fast-Charge and Low-Cost LIBs maintaining other performance requirements of EV cells,
including energy, power, cycle life, calendar life, and safety.

Objectives
o Develop unique electrolyte formulations integrating commercially available organic solvents, salts and
additives that will perform well with Silicon anodes and Ni-rich NCM cathodes.

o Evaluate and support the develop of a pre-lithiation solution for high capacity and high percent active
silicon anodes addressing manufacturability, reproducibility, accuracy, cost and safety.

o Develop optimized cell designs to build and deliver cells that will meet the USABC EV battery goals for
commercialization in calendar year 2023.

o Evaluate and integrate cost effective and high performing active and passive materials, processing steps
and cell designs to meet the Low-Cost and Fast-Charge targets.

o Build, deliver and test large format (10 - 60 Ah capacity) pouch cells integrating optimized high capacity
silicon-based anode, NCM cathode, electrolyte, separator and pre-lithiation to meet the USABC fast-
charge, low cost, energy, power, cycle life, calendar life, safety and temperature EV goals.
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Approach

Zenlabs is utilizing a system-level approach to screen, develop and optimize the critical cell components
(cathode, anode, electrolyte, separator), pre-lithiation process (process, dose), cell design (N/P ratio, electrode
design) and cell formation and testing protocols that will enable meeting the USABC EV cell level goals for
the year 2023. The development consists in integrating pre-lithiated silicon-based high capacity anodes, high
capacity Ni-rich NCM cathodes, high voltage electrolytes and composite separators into large capacity (10-60
Ah) pouch cells. The developed cells will target Low-Cost and Fast-Charge along with high energy density
and power, good cycle life and calendar life, safety and low and high temperature performance. During the
program, Zenlabs will utilize three cell build iterations to meet the program targets that will deliver cells to the
National Laboratories for testing. Cells will be tested both at Zenlabs and independently by three National
Laboratories: Idaho National Laboratory (INL), Sandia National Laboratory (SNL) and National Renewable
Energy Laboratory (NREL).

During the program, Zenlabs will leverage its material, processing and cell design and development expertise
to screen, engineer and optimize various electrolytes, pre-lithiation approaches and cell design solutions
addressing the challenges associated with meeting the USABC Low-Cost and Fast-Charge cell targets.
Zenlabs has identified development areas that will be addressed and improved during the program. Significant
material and cell development in the areas of electrolyte engineering, pre-lithiation development and cell
design engineering will take place. Material and cell development typically starts at the coin-cell level where
initial screening, testing and optimization takes place. Zenlabs has extensive experience working with coin-
cells ensuring that identical electrode formulations, specifications, cell designs, components, formation, etc.
are identical to what is used in the pouch cell designs and therefore ensuring similar results are obtained. Once
the critical parameters have been optimized at the coin-cell level, results are validated and fine-tuned at the
pouch cell level typically in 12 Ah capacity pouch cells.

Zenlabs believes that their silicon-dominant cell technology will be able to meet the USABC program EV cell
cost target of 75 $/kWh. First, the high energy density of the cells increases the kWh of a given system, which
reduces the $/kWh ratio and reduces the cost target gap. In addition, by utilizing a high capacity silicon based
anode, the quantity of material needed is reduced and cost decreases. While the current costs for silicon oxide
and pre-lithiation can be relatively high, Zenlabs continues to evaluate and qualify cost effective options and
believes that the cost of these important components and processes will continue to decrease significantly in
the near future as existing suppliers scale production and additional suppliers come online. Zenlabs has
identified and qualified cost effective silicon suppliers that are projecting similar costs to graphite once
manufacturing production levels continue to scale. Zenlabs is also partnering with a cell manufacturing
partner and equipment vendors to build pre-lithiation equipment capable of meeting the Low-Cost and
manufacturing program targets.

The duration of the program is 2 ¥ years where Zenlabs will meet the USABC Low-Cost and Fast-Charge cell
specifications by integrating silicon-dominant anodes, unique electrolyte formulations and cell designs that
will improve fast charging, cycle life and calendar life, as well as focusing on the best pre-lithiation solutions
and material options to reduce cost and improve performance. At the conclusion of the program, the cells will
meet the USABC EV cell goals for the year 2023.

The program has been structured in a way that as it progresses, the cell targets increase with respect to specific

energy, energy density, cycle life and lower cell cost. The program consists of 3 cell builds during the 2 ¥ years
that include a baseline cell build at the beginning of the program (CB#1), a second cell build (CB#2) midpoint in
the program and a final cell build (CB#3) at the conclusion of the program. Cells from each of the builds will be
delivered and independently tested by the National Laboratories. Figure 1.1.C.1 shows the projected usable BOL
(beginning of life) and EOL (end of life) cycle life (a), cell cost (b), specific energy (c) and energy density (d) for
the three program cell builds. The measured cell paraments and cost for the baseline cells (CB#1) are also shown
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in the figure. Different cell builds will focus on different size and capacity cells, with CB#1 and CB#2 focusing
on 12 Ah capacity cells while CB#3 primarily focusing on larger 50 Ah capacity cells.
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Figure 1.1.C.1 Projected cell development progression throughout the USABC program and measured CB#1 values
Results

Zenlabs has demonstrated 1,000 cycles at 1C charging rate (1 hour) and 650 cycles at 4C charging rate (15
minute) from 12 Ah capacity, 315 Wh/Kg energy density pouch cells before reaching 80% capacity retention. In
both cases the cells are discharged at a 1C rate and cycled at 100% of its full state of charge window consisting of
2.5V t0 4.3V. The cells integrate a silicon-dominant SiO anode and Ni-rich NCM622 cathode. The same high-
energy cells are highly rate capable being able to charge to 80% and 90% of its capacity in 10 minutes and 15
minutes, respectively. Figure 1.1.C.2a shows the 1C rate charge and discharge cycling meeting the USABC
1,000 cycle goal. Figure 1.1.C.2a also shows the 4C fast charge (15 minute total CC + CV) cycling followed by a
1C rate discharge meeting 650 cycles before reaching 80% capacity retention. The fast charge cycling also
contains a 1C charge and 1C discharge capacity check every 50 fast charge cycles. Figure 1.1.C.2b shows the
fast charging capability of the cells being able to charge 80% of their capacity under a 10 minute charge.
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Figure 1.1.C.2 Cycle life from 1C rate and 4C rate charging (a) and fast charging capability of the pouch cells (b)

Cycle life results from the 12 Ah capacity pouch cells are meeting the USABC 1,000 cycle target for 1C charging
rate and showing very promising 4C rate fast charge cycling with 650 cycles. From similar baseline CB#1 pouch
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cells (12 Ah, 315 Wh/Kg), Idaho National Laboratory has independently tested and obtained improved cycling
results. Figure 1.1.C.3 shows the Dynamic Stress Test (DST) cycling results under standard C/3 rate (3 hour)
charging and under 100% fast-charging 4C rate (15 minute) conditions. After 9 reference performance tests
(RPTSs), each taken after 112 DST cycles, INL has obtained 1,008 DST cycles with cells still maintain 85%
capacity retention under the C/3 rate charging condition. Cells continue to cycle under C/3 charging and are
projecting to achieve ~1,500 DST cycles before reaching 80% capacity retention. Figure 1.1.C.3 also shows the
DST cycling performance from cells under 100% 4C rate fast-charging condition. After RPTS, the cells
successfully completed 896 DST cycles. Cells under 100% fast-charging conditions did not complete RPT9, but
overall showed excelled fast charging results nearly meeting the USABC 1,000 fast-charge cycle target.
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Figure 1.1.C.3 DST cycling from standard C/3 rate charging and 100% fast-charging 4C rate conditions

Zenlabs continues to demonstrate that their high-energy silicon-dominant cell technology consisting of SiO
anodes and Ni-rich NCM cathodes are able to cycle at full 100% usable window (4.3V to 2.5V) under standard
and fast-charging conditions. Cycling results have been measured internally at Zenlabs and independently
validated by various automotive OEMs and INL. Cycling results suggest that Zenlabs’ cell technology is able
to compensate and support the large volume expansion of silicon while avoiding fragmentation and
pulverization problems. Based on cycle life, fast-charging capability, high energy and power, this technology
is nearly ready from commercialization. Some of the remaining challenges of the technology are gas
generation and calendar life. Both reduction of gas and improvement of calendar life are closely tied to the
electrolyte formulation. Zenlabs continues to focus on the development of unique electrolyte formulations to
reduce gas generation and improve calendar life performance while maintaining other critical cell parameters
like cycle life, rate capability, energy, power, low/high temperature operation, cost and safety.

The stability and properties of the electrolyte are critical to ensure good cell performance with respect to
calendar life and reduced gas generation while continuing to meet the fast rate charging, cycle life, low and
high temperature operation, cost and safety requirements. Decomposition of the electrolyte at the negative
electrode can take place under the highly reducing and oxidative high voltage environments. The only reason
graphite electrodes remain dormant to the reduction process is due to the formation of a stable protective film
at the interface of the anode electrode and the electrolyte which is termed as the solid electrolyte interface
(SEI). Si-based materials also require an SEI, that is chemically and potentially structurally different than
graphite. The chemical nature and stability of the SEI film is highly dependent on the type of electrolyte with
respect to the organic solvents, additives and salts used. The SEI is electronically insulating but allows the
ionic transport of lithium ions. Forming a stable SEI on the silicon surface can reduce gas generation and
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improve calendar life by preventing an increase in cell resistance associated with the continual breaking and
reforming of the SEI with cycles and high temperature storage.

Zenlabs continues to evaluate various electrolyte formulations containing different commercially available
linear and cycling organic carbonate solvents, solvent ratios, lithium salts, salt concentrations and various
additives known to perform well with silicon anodes and Ni-rich NCM cathodes. Various anti-gassing
additives, anode and cathode SEI forming additives, hydrofluoric (HF) acid scavenging additives, and fire
retardant additives are also being evaluated. Initially the electrolyte formulations are screened and evaluated in
coin-cell full-cells under identical cell design conditions used in the pouch cells. After promising electrolyte
formulations based on capacity, rate, and cycle life are identified from coin-cells, evaluation in large capacity
pouch cells will follow. Figure 1.1.C.4a shows the coin-cell full-cell cycle life data at 1C rate for various
electrolyte formulations where different antigassing, SEI former and nonflammable additives A9 and A10
were evaluated. The results show promising cycle life at 1C rate and 4C rate (not shown) while integrating the
additives into electrolyte system #29. Figure 1.1.C.4b shows the gas generation from small 2 Ah capacity
pouch cells. Zenlabs has developed a high-throughput protocol using small 2 Ah capacity pouch cells to
quickly evaluate the gas generation and thermal stability of the cell integrating different electrolyte
formulations. Reducing the gas generation is important to improve the safety and longevity of the cell. By
using smaller 2 Ah pouch cells without pre-lithiation, Zenlabs can use pre-made pouch cells to easily screen
different electrolyte formulations. The 2 Ah cells integrate identical Ni-rich NCM cathodes, SiO anodes,
separator and cell design. Normally, the down-selected electrolytes are integrated into larger pre-lithiated 12
Ah capacity cells where similar trends to the 2 Ah capacity cells are obtained and results are validated. The
thermal performance test consists of storing the cell at a temperature of 65°C at a 100% SOC (corresponding to
a charge voltage of 4.3V) and monitoring the cell thickness change versus time. Figure 1.1.C.4b shows the cell
thickness increase as a function of storage time for different electrolyte formulations tested in the high-
throughput 2 Ah capacity cell. It can be seen that the gas generation from electrolyte #4 which is used as the
build #1 baseline electrolyte, is high compared to electrolyte #29 and #39. The gassing experiments also show
that gas is reduced by integrating electrolyte additive A9 and A10. Promising electrolyte formulation with
additive A9 and A10 are being integrated in upcoming cell build #2 (CB#2) and gassing results will be
reported in future report.
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Figure 1.1.C.4 1C rate cycling (a) and cell thickness increase versus storage time (b) for different electrolyte formulations

Zenlabs experienced delays with cell build #2 (CB#2) due to the ongoing COVID-19 pandemic, relocation of
their cell prototyping facility and equipment problems. Zenlabs relocated its cell prototyping facility to a new
location. The new space is 2.3 times larger in total area and 3 times larger in dryroom space compared to the
previous facility. The new space is setup to support future growth of the company. Figure 1.1.C.5 shows
images of the new facility highlighting the coating and dryroom areas. Zenlabs cell prototyping facility is
currently operating after completing the relocation and resolving the facility and equipment problems. The
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new facility has completed building the next set of cells (CB#2) to be delivered to the National Labs. For cell
build #2, Zenlabs down-selected NCM622 cathode #1, SiOx material from vendor #1, composite separator
with drying temperature T4 and electrolyte formulation #4 with additives A9 and A10. Zenlabs expects to
deliver 37 — 12 Ah capacity cells to the National Labs in early January 2021 consisting of 26 cells to INL, 8
cells to SNL and 3 cells to NREL.

CeII prototyping faC|I|ty

Figure .1.C.5 Zenlabs new cell prototyping facility

Zenlabs continues its cell development focused on improving calendar life and reducing cost for the upcoming
final cell build #3 (CB#3). Zenlabs has developed a protocol to evaluate calendar life from coin-cells as a
screening tool, where promising conditions and designs are later evaluated in large capacity pouch cells.
Additional development is ongoing to further improve the fast-charge capability and reduce cost of the final
cells while continuing to meet the rest of the USABC cell specifications (energy, power, safety, calendar life,
temperature, etc.). The final development of the program is focusing to down-select and integrate the best
electrolyte formulation to reduce gassing and improve calendar life, a higher Ni-rich cathode capable of higher
capacity at lower voltages, a water-based anode binder to simplify processing and reduce cost and a pre-
lithiation approach using a newly develop deposition tool from Applied Materials that is reproducible, cost
effective and able to support giga-scale production. CB#3 material and cell development continues and results
will be reported in future reports.

Conclusions

Zenlabs silicon-dominant 12 Ah capacity and 315 Wh/Kg specific energy pouch cells have meet the 1,000
cycle life target from USABC and have shown excellent fast charging capability recovering >80% of its
capacity under a 10 minute charge. Results have been independently validated by Idaho National Laboratory
where they showed 1,008 DST cycles completed while still maintain 85% capacity retention under a C/3 rate
charging condition. Identical baseline cells (CB#1) also successfully completed 896 DST cycles under 100%
fast-charging 4C rate condition. The excellent cycling performance under standard and fast-charging
conditions show that this high-energy silicon-dominant cell technology is mature and nearing
commercialization. Final material and cell development of the program is focused on reducing gas generation
and improving calendar life while continuing to meet the fast-charge, low-cost, cycle life, energy, power,
low/high temperature operation and safety specifications. The down-selected materials and cell design will be
integrated in the final cell build (CB#3) of the program due in mid 2021.
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Project Introduction

Physical Sciences Inc. (PSI) recognizes the need to advance the state of the art of lithium ion battery
technology for transportation uses. Two critical issues are demonstrated in this technology assessment
program: Cost and Performance. PSI has developed a technology that has shown in defense applications the
ability to both improve the volumetric and gravimetric energy density while also allowing for lower cost due to
advantages in materials and processing. This TAP program is meant to demonstrate these advantages of the
PSI innovation.

Objectives

The objective of the technology assessment program is to both deliver prototype batteries (8Ah) capacity along
with an updated cost model to project how the advantages of this technology can lower the $/kWh cost. The
cells with advanced cathodes and constructed utilizing know-how developed by PSI will be delivered to
USABC in late 2020.

Approach

The 18 month TAP program consists of three distinct stages. In Stage 1 individual components, cathode,
anode and electrolyte were optimized around the 8Ah cell design selected by USABC for this technology
assessment. In State 2, smaller 2-4 Ah cells were prototyped and further optimized with an emphasis on low
cost, fast charge and energy density. Finally, in Stage 3, the 8Ah cell design was frozen and cells were built
for both internal testing and delivery. A cost model will be delivered as part of the final program deliverable
that demonstrates anticipated costs using a process familiar to LG Chem who is the commercialization partner
for PSI in this program.

The PSI innovation being demonstrated is PSI’s patented High Active (HA) coating technology which puts a
conductive coating on the active materials and eliminates the need for high surface area carbons in the
electrode formulation. Thus, the resulting electrodes are denser and contain 99% by mass of the active
material. Other key advantages of this technology are the need for much less NMP in slurry preparation, less
binder, faster drying times, less overall surface area, less electrolyte and longer shelf life. All these advantages
lead to both performance and cost benefits.

Results

To date, the deliverable cells are undergoing acceptance testing at PSI and are planned to be shipped prior to
the end of calendar year 2020. Below is a summary of both the energy and power performance of these cells
that contain cathode electrodes whose composition are 99% active material.
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Table 1.1.D.1 Summary 8Ah Cell Information

Cell Specification Value Unit
Nominal Voltage 3.72 Vv
Nominal Capacity, C/3 7.8 Ah
Max/Min Voltage 4.35/2.8 v
Mass 0.117 kg
Volume 54 cc
Specific Energy 247 Wh/kg
Energy Density 533 Wh/I

Table 1.1.D.1 provides a summary of the 8Ah cells to be delivered to USABC. These are the actual average
performance values for cells that are currently undergoing break-in testing prior to delivery. These cells are
only meant to demonstrate the performance characteristics of the PSI technology and the cost models are based
on much larger cell sizes that tend to improve the total cost savings and the specific energy density.

Table 1.1.D.2 Detailed Cell Information

Cathode Design
Cathode Material HA Coated NCM-622 Unit
Active Percentage 99% %
Electrode Loading (single side) 17.3 mg/cm2
Areal Capacity 2.9 mAh/cm2
Press Density 3.4-3.5 g/cc
Number of Pairs 22
Foil Thickness Bare Aluminum, 12 um
Anode Design
Anode Material Articicial Graphite
Electrode Loading Isingle side) 9.4 Mg/cm2
Areal Capacity 3.1 mAh/cm2
Press Density 1.5-1.6 g/cc
Number of Pairs 23
Foil Thickness Bare Copprt, 9 um
Separator
Type Polypropylene
Thickness 12 um
Slit Width 92 mm
Electrolyte
LiPF6 1 M
EC:DEC:EMC 4:3:3
vC 2 Wit%

Table 1.1.D.2 gives the complete bill of materials for the 8Ah cells that are to be delivered to USABC from this
TAP program. For this program, HA was only applied to the cathode material (NMC-622) although work was

done and will later be shown where the HA technology was also applied to the anode material.

44 USABC Battery Development & Materials R&D



FY 2020 Annual Progress Report

(@) C/3 Discharge to 2.8V
Normal
8 Mean 7809
StDev 0.08689
7 N 33
3
> 5
c
A
g
o
3
2
1
o
72 84 87 9.0
Capacity (Ah)
®) C/3 Specific Energy
Normal
s Mean 2473
StDev 1650
o N 33
7
3
)
5
S
g
oy
34
2
“
0~ > . .
240 243 245 249 252 255 258

C/3 Specific Energy (Wh/kg)

Figure 1.1.D.1 (a) Frequency vs. Capacity for 8Ah Cell Build (b) Frequency vs. Energy for 8Ah Cell Build

Figure 1.1.D.1 provides cycling data for the group of 8Ah cells that will be delivered to USABC at the
conclusion of this TAP program. Another advantage of the HA technology is that it allows for much tighter
processing conditions (higher solids in slurry, no active carbons in slurry, less binder) that results in much less
spread of the performance characteristics of cells. All measured performance properties shown are within 1%
of the mean. This advantage will also lead to better grading of cells to be selected for battery builds going
forward, which also contributes to a lower overall cost.
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Figure 1.1.D.2 (a) 3C Discharge Power vs. % SOC on HPPC Testing (b) 1C Discharge Power vs. % SOC on HPPC Testing

Figure 1.1.D.2 shows the HPPC test both at the 1C and 3C rates. These cells all meet the performance
requirement above 20% state of charge. PSI has also utilized this data to construct a charging protocol that
allows for more than 80% of the available energy to be recharged in less than 15 minutes.
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Table 1.1.D.3 Projected HA Cost Impact on Process and Component Costs

Process LG Baseline With HA Technology
Slurry Preparation 0.025 0.02
Coating/Drying 0.1 0.075
Balance of Operations 0.075 0.075

Component LG Baseline With HA Technology
Cathode Material 0.25 0.22
Electrolyte 0.1 0.09
Balance of Materials 0.45 0.43

Table 1.1.D.3 provides the basis of the cost model employed by PSI to determine the cost saving incurred by
utilizing PST’s HA coating technology (values only represent cathode coating). In this model developed in
conjunction with LG Chem, acting as a commercialization partner, the overall cost of a cell currently comes to
about 80% of costs coming from materials whereas 20% comes from processing costs. This table shows how
the HA technology only on the cathode can reduce the cost by 9%, from $100/kWh to $91/kWh.

Conclusions

Although this TAP program is still active, current conclusions are that 8Ah cells have been fabricated using the
PSI HA technology that show performance gains over baseline technology. These cells have a higher specific
energy while maintaining power performance. The scale-up and cell construction efforts demonstrate the
increased active material content, 99%, and decreased processing solvent and therefore cost that the HA
technology enables.
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Project Introduction

As the automotive industry continues to expand into electromobility with hybrid electric vehicles and fully
electric vehicles to meet emissions goals, the need for advanced materials to meet standards for safety, energy
density, and cost demand technical advances in battery systems and materials. Lithium titanate (LisTisO12 or
LTO) negative electrode material has the potential to meet or even exceed these targets. The material has lower
temperature compatibility and excellent cycle life that has resulted in its application in urban electric buses.
LTO has offers improved safety over other materials making it an ideal material to commercialize. The factors
impeding its commercialization include low voltage potential, high temperature gas generating reactions, and
increased cost over other negative electrode materials. Many of these issues stem from the cathode material
most often paired with LTO, nickel cobalt manganese (NCM) cathode materials. The pairing of NCM with
LTO for a lithium ion battery results in low energy density and fairly high cost. However, coupling LTO with
lithium nickel manganese oxide high voltage spinel (LiNiosMn1504 or LNMO or HVS) resolves those
concerns given its price and voltage advantage over NCM materials. By resolving the gas generation issues of
LTO and developing an electrolyte that can work with the LNMO material, advances in electromobility
commercialization can be realized.

Objectives

The primary objective of this project is to develop electrolyte formulations and novel electrolyte additives to
protect and improve LTO and LNMO materials. The electrolytes and additives developed for these electrode
materials are targeted to have minimal gas generation, high cycle life, high power charge/discharge
capabilities, wide operating temperature, and competitive cost. In addition to this primary objective, the
analysis of the interactions of the electrolyte with these materials leading to the understanding of gassing and
failure mechanisms is also being targeted.

Approach
The approach to this project has been broken into 6 tasks as identified below:

Task 1: Novel Additive Design, Synthesis, Screening and Scale Up

Task 2: NCM622 v. LTO Multi-Layer Pouch Cell (MLPC) Testing and Analysis
Task 3: LNMO v. Carbon Anode MLPC Testing and Analysis

Task 4: LNMO v. LTO 2Ah MLPC Testing and Optimization

Task 5: LNMO v. LTO 10 Ah MLPC Testing and Optimization

Task 6: LNMO v. LTO 10 Ah MLPC Scale Up and Deliverable.

In task 1, the novel additives that are targeted for solid electrolyte interface (SEI) formation, cathode
electrolyte interface (CEI) formation, and manganese dissolution prevention are synthesized and screened in
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coin cells before testing small batches of the best candidates in pouch cells. In addition, surface analyses that
aid in development and understanding of additives with the electrode materials are also conducted. Most
promising candidates are then scaled up for large batch production and selected for patent protection.

Task 2-4 are similar in testing, but different in objective. The goal of combining the LTO with NCM®622 in task 2
is to isolate the LTO gas generation mechanisms from the LNMO gas generation mechanisms to understand
which additives LTO responds to best. The same is true for task 3, where the LNMO is kept apart from the LTO
for understanding and additive development. The hope is that this will not only provide additives for the
NCMI/LTO systems currently being investigate, but also provide additives and formulations for the 4.9V
LNMO/C system as well. These two tasks will narrow down the novel additives and formulations with the
information being used to make more intelligent electrolyte design for task 4. Task 4 will still have analyses and
discoveries to be made in testing as each combination has its unique mechanisms and voltage ranges, but the need
for understanding on these materials and combinations is important. Task 2 focuses on 45°C cycling and 45°C
storage testing. Task 3 focuses on 25°C and 45°C cycling. Task 4 focuses on 25°C cycling, 45°C cycling, and
45°C storage. During the performance testing of each task, electrolyte will undergo property testing to measure
conductivity, viscosity, vapor pressure, flash point, water and HF content, and lithium transference number.
Finally, any surface analysis, gas analysis, or other analytical techniques need will be carried out.

Once the initial testing in task 4 is completed, the MLPC will be scaled up from 2Ah cells to 10 Ah cells. In task
5, the large cells will undergo -20°C, 25°C, and 45°C performance testing. The best formulations will then be
selected for task 6 deliverable testing where the cells will be sent to National Laboratories for further testing.

Results

This project has undergone delays due to the COVID-19 pandemic, but many results have been able to be gathered.
The findings and results will be addressed in order of the tasks as described in the approach section of this report.

Task 1 has produced small scale quantities of 12 different novel additives. Of the 12 additives, 10 have been
evaluated in NCM622/LTO and LNMO/C MLPC, with 2 awaiting testing. Currently, 4 of the 10 have been
selected for scale up and potential patent protection. The additives will continue to be screened in LNMO/LTO
cells as development continues.

Task 2 focused on the electrolyte optimization and mechanistic understanding of the NCM622/LTO MLPC
testing. The data is still being analyzed to determine best novel additive candidates, but the performance
testing showed optimized, EC free formulations were successful at mitigating gas generation without
sacrificing performance as seen in Figure 1.1.E.1. Extensive work has been done to find suitable EC
replacement solvents as well as optimization of the novel additives to improve the performance. It is expected
that the results from this work will be disclosed further through publication or presentation when finalized.

Task 3 results can be categorized into three findings. The first finding has been extensive comparison of
LNMO material from various suppliers. Due to unforeseen circumstances with the original material supplier,
supply was obtained from two other sources. Comparison of these materials has shown a variety of differences
in particle size and morphology resulting in difference performance trends. Supplier 1 showed good
performance with low impedance while Supplier 2 showed improved gas generation but higher impedance.
Supplier 3 showed the best capacity retention, impedance, and gas generation of the three suppliers. Even with
the comparison and obvious differences, all three materials showed dismal initial cycle efficiency (ICE) , and
two of the materials have shown degradation/instability in storage over time indicating the consistent
commercialization, fabrication, and synthesis of this material is not yet realized.
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Figure I.1.E.1 Comparison of EC free formulation with a standard (STD) EC containing electrolyte formulation after 4 weeks
of 45°C storage in 2 Ah NCM622/LTO MLPC. The EC free formulation shows no gas generation after 4 weeks of high
temperature storage and improved recovered capacity.

Task 3 results also showed an unexpected gassing mechanism. Results of gas analysis and gas measurement
showed that during cycling, generated gas was consumed. Based on gas analysis, it is likely the carbon dioxide
that is being consumed. Extensive examination of this was unable to be carried out due to scope of the project,
but the results and findings were collected and shared. The final results from this task included development of
formulations and novel additives that improved the cycling performance of the LNMO/C 2Ah MLPC. Figure
1.1.E.2 shows the cycling of formulations that showed similar or improved performance over the baseline
(black curve) using novel additives and/or combinations of additives. Figure 1.1.E.3 shows the corresponding
gas generation of the cycled formulations with many showing decreased gas generation compared to the
baseline (red bar).
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Figure I.1.E.2 Cycling at 25°C in LNMO/C MLPC showing L6-C24, L6-4-C26, and L6-4-S1 have improved performance over
the baseline L6-4 (Rd. 4 - Normal, Black Curve).
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Figure 1.1.E.3 Corresponding volume of gas generated by the formulations undering 200 cycles of 25°C cycling testing in
LNMO/C MLPC in the previous figure.

Task 4 is now the current focus of the project with extensive testing being carried out in LNMOLTO MLPC.
No findings or results are yet prepared, but extensive work on novel additive screening as well as novel
solvents is being undertaken. This is the task most delayed by COVID-19, but with operations temporarily
back progress is expected to be made.

Conclusions

In this annual project write up, several conclusions can be made. The first being that NCM622/LTO pouch
cells benefit greatly from EC free formulations when optimized with the appropriate EC replacement solvents
and additives. This work is expected to be published as the data analysis is completed. The novel additives
generated from this project show promising results with one patent being drafted, others being evaluated, and
scale up of selected compounds started. The work being done on the LNMO material is exposing failure,
aging, and gassing mechanisms that allow for more understanding of the electrolyte-electrode interactions.
Even with this understanding, the supplier comparisons have shown the need to work towards improved
synthesis and commercialization of the material. With the compounds created in task 1 of the project and the
information from task 2 and 3, the LNMO/LTO MLPC work being carried out in task 4 to develop an
electrolyte to meet the objectives of this project is underway.
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Project Introduction

There are a variety of technical attributes to electron beam (EB) curing of LIB binders. EB curing uses
solvent-free compositions that have low emissions (VOCs, etc.) and are recognized by federal, state and local
governments as being a more desirable technology. Solvent or water-based processing requires high drying
energy and results in significant CO, emissions. EB curing offers significant process energy savings, is ultra-
high speed, and utilizes much more compact equipment than conventional drying ovens (much less plant floor
space required). Furthermore, it is a relatively cool process and is compatible with heat-sensitive substrates.
Conventional thermal drying of LIB electrodes is typically conducted using multiple temperature stages;
however, EB can be conducted in a single step. Solvent-free electrode compositions are rated as non-
flammable, which translates into lower insurance costs, less stringent storage requirements and, a reduction in
handling hazards.

EB treatment is a fast, robust materials processing technology that commonly delivers low cost and excellent
performance for high-volume materials production. Based on decades of development and commercial
deployment, self-shielded machines routinely operate with high reliability and low maintenance in industrial
roll-to-roll production environments. ORNL is developing, demonstrating, and transitioning technology for
high-speed roll-to-roll EB processing of LIB electrodes (i.e. coating formation and binder curing). Further
specific advantages of this processing route for LIBs are:

e Unmatched throughput — We estimate > 600 m?/min throughput can be achieved based on >300 m/min
line speed for roll widths up to 2 m ($1.5-2.0M installed with machine footprint ~10 m?).

e Thicker electrodes — Up to 150 microns can be achieved at the throughput rate mentioned above.
Coatings of several hundred microns could be processed at higher capital cost per unit throughput,
modest reduction in energy efficiency, and larger equipment footprint.

o Excellent energy efficiency — Electrical efficiencies >60% are possible, including voltage transformer
losses (i.e., 260% of electrical line energy is converted to productive EB energy).
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o Environmentally friendly — EB processing requires no solvent and no initiator and has low emissions.

Objectives
o Significant process energy savings

e Ultra-high electrode processing speed
o Utilize much more compact equipment than conventional drying ovens.

Approach

ORNL is working on a multiphase approach to develop, demonstrate, and transition EB processing of roll-to-
roll battery materials.

Phase 1 — Demonstrate the technology’s key differentiating attributes of high throughput and thick layer
processing (FY15-16).

Phase 2 — Address the key challenges of EB curing parameters and resulting material performance; develop
coating methods requiring little or no solvent. (FY17-18).

Phase 3 — Demonstrate an optimized curing system in conjunction with a high-speed coating line together with
a key equipment partner and battery manufacturer (FY19-20).

Results

As this project moving into Phase 3, a roll-to-roll EB processing pilot line is procured, installed, and
implemented at the DOE Battery Manufacturing R&D Facility (BMF). Key parameters of the pilot lines are
listed in Table 1.2.A.1. The highest voltage is 300 KeV, which is capable of penetrating thick electrode with 40
mg/cm? loading (~ 6.5 mAh/cm?). It also comes with a “clam-shell” chamber for self-shielding and Nz inerting
to <200 ppm of oxygen.

Table 1.2.A.1 Key features of the EB processing pilot line at BMF.

Key parameters

Voltage 120-300 keV
Width 15 inches
Line speed 3-30 feet per minute
Inert self-shielded and N2 inerted < 200 ppm of oxygen

Figure 1.2.A.1a shows the completion of the framework of the EB pilot line during a progress inspection in
December 2019. The factory acceptance was conducted in March 2020. Figure 1.2.A.1b, ¢ and d show the
unwind front, web passing-though the chamber, and rewinding end, respectively. During the inspection, the
conditioning test was conducted at a minimum requirement of 300 kV and 15 mA. Radiation survey was
conducted, and the reading was less than 0.1 mR/hr at 10 cm from all surfaces and the entering/exiting slots.
Four (4) hour production rate test was carried out at 300 kV, 75 kGy at a line speed of 10 meter/minute. The
beam cross-web uniformity was +£6.5% as shown in Figure 1.2.A.2. The equipment was then shipped and
installed at BMF as shown in Figure 1.2.A.3.
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Figure 1.2.A.1 (a) overview of the framework of the EB pilot line. (b) the unwind front, (c) web passing through the chamber,
and (d) the rewind end of the pilot line during the factory acceptance.
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Figure .2.A.2 Dose uniformity across the dosimeter strip.

Figure 1.2.A.3 The EB pilot line installed at Battery Manufacturing R&D Facility at ORNL (BMF).

Electron beam curing were conducted on cathode electrodes using the newly installed EB curing pilot line.
Four different EB curable binders were used (here and after denoted as Binder A, Binder B and Binder C). The
electrodes were prepared at BMF using a doctor-blade coating bar with formulation of NMC/Binder/carbon
black at 88/7/5 wt%. The loadings are about 24 mg/cm?. The processing meters were controlled by HMI at 300
kV, 60 kGy and 2 feet-per-minute.
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Figure 1.2.A.4 (a) Voltage curves of the EB processed NMC cathode using different binders. (b) Cycling performance of EB
processed NMC cathodes using different binders.

Pouch cells were assembled using EB cured NMC cathode electrodes with 4 different binders. Figure 1.2.A.4a
shows the voltage curves of EB processed NMC cathodes for the 2", 50, 100t and 300" cycles. For binder
A, the cell is unable to deliver meaningful capacity. For the other 3 binders, the voltage curves show typical
features of NMC materials. Figure 1.2.A.4b shows the cycling performance of EB processed NMC cathodes
with 4 different binders. A phenomenon observed in cell A is enormous gassing as shown in the inset of Figure
I.2.A.4b. This is an indication that this type of binder is not stable in Li-ion cell environment and leads to
serious side reaction. The other 3 binders show good cycling performance with about 81% capacity retained
after 400 cycles.

Several important studies have been done, which consider the pack-level cost implications of LIB electrode
processing. BatPaC, Argonne’s spreadsheet-based performance and cost model for automotive battery packs,
has been widely used to project battery costs. In the NMP based electrode processing, the energy demand for
the process can be as high as 10.2 kWh per kg of NMP vaporized. The large energy demand is because of the
large quantity of air that must be heated and cooled. The main driver behind the heat demand is the large air
flow rate required in the dryer to ensure that the NMP concentration is always maintained far below the
flammability limits, typically an order of magnitude lower. The overall cost of the drying and NMP recovery
contribute ~3% to the cost of the battery pack. Figure 1.2.A.5a shows the cost breakdown distributed to
materials (58%), purchased items (23%) and manufacturing (19%). In the manufacturing part, Figure 1.2.A.5b
shows the cost breakdown into electrode processing, cell assembly, formation, module/pack assembly and
others. In the electrode processing, about half of the cost is related to NMP drying and recovering.
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Figure 1.2.A.5 (a) Cost breakdown distributed to processes, and (d) cost breakdown of the manufacturing when NMP drying
and recovering are used in electrode processing.
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The objective of this part of work is to study the energy demand and distribution for the EB curing of the
cathode, and to estimate the cost of this process compared to the NMP drying/recovering process. Figure
1.2.A.6 shows the cost reduction benefit when EB curing is used to replace the NMP drying/recovery process
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Figure I.2.A.6 Electrode processing cost reduction by using EB processing compared to NMP drying/recovering process.

in the electrode processing. The cost input values are listed in Figure 1.2.A.7. When similar line speed (50 fpm)
is used, EB processing can save 40% of the cost. Electron beam can enable high speed production because
chemical curing takes less than 1 second compared to thermal drying. Figure 1.2.A.6 shows the cost reduction
benefits with the increase of the web speed in EB processing. When a high speed of 500 fpm is used, the cost
can be decreased to 6% of the NMP based process.

Category Parameter Value Unit Category Parameter Value Unit
Electricity Electricity 0.1 /kw-hr Material Electrode 1.2 gfcc
Weight fra 0.85 wt%
Current co 2.7 gfcc
Nitrogen Nitrogen c 0.13 fscm Current co 15 microns
Nitrogen e 20000 fyr Active mat 150 mA-hr/g
Nitrogen d 1.2 kg/scm
Embodied Primary en 3 Capital eq1 275 keV sit 3200000
Nitrogen 1700 kll/kg 275 keV du 4200000
Equipment 0.2
Labor Direct ope 28 /p-hr Equipment 10 yr
Direct mai 80000 fyr
Indirect lal 0.4 Building Area 7500 sq ft
Unit cost 200 [/sq ft
Operation: Shift durat 2000 hrs Bldg & me: 1500000
Total oper 7500 hrs Facility dej 30 ¥r
Annual shic 4 Startup, cc 0.2
Spare part 10000 /beam-shift
Miscellane Insurance 0.02
Cell Average v¢ 35V Bldg utilitie 2 [sq ftfyr

Figure .2.A.7 Cost input values for calculating the EB processing cost in electrode processing.
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Conclusions
e An EB processing pilot line has been successfully purchased, installed and implemented at BMF.

o Binder evaluation found that certain type of EB curable binder can have serious side reaction in Li-ion
battery. Several good binder candidates have been identified with good cycling performance.

o The benefit of using EB processing has been calculated compared to NMP drying/recovering processing.
The EB processing shows 94% cost reduction when 500 fpm production rate is implemented.
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Project Introduction

This project at the DOE Battery Manufacturing R&D Facility (BMF) at ORNL builds on past research
successes in the areas of battery electrode process development and optimization, cost reduction, cell energy
density improvements, and manufacturability advancements, which support the Vehicle Technologies Office
(VTO) and Electrochemical Energy Storage Tech Team ultimate targets of $80/kWh-usable system cost, 500
Wh/kg cell energy density, 800 W/kg cell power density, and 10-15 min extreme fast charging times. Our goal
is to perform the science needed to reduce high-risk, high-payoff technologies to lower risk levels, such that
U.S. industry will consider their integration in future products. Once a new material, process, or concept has
demonstrated feasibility for integration and scaling, the BMF will work to make it a viable processing
methodology (preferably with industry partners) with validated performance in a full pouch cell design. While
doing so, the BMF will leverage a large array of complimentary projects and sponsors that will provide
additional experience and a fast, efficient methodology for solving problems faced by the domestic lithium-ion
battery (LI1B) industry.

Objectives
To improve cell energy and power density and reduce battery pack cost by manufacturing thick electrodes with
tailored electrode architecture via advanced processing and high-energy, high-voltage cathode materials:

o Apply aqueous processing to Ni-rich layer oxides (NMC811 and NCA).
e Fabricate thick (6-8 mAh/cm?), crack-free composite NMCB811 cathodes via aqueous processing.
o Create laser structured electrodes.

e Characterize electrolyte imbibition rate and understand the electrolyte imbibition-processing
relationship.

o Assemble pouch cells with NMC811 and thick, tailored electrode architecture
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e Demonstrate energy density >225 Wh/kg (BMF pouch cell level).

Approach

o Evaluate stability of high-energy and high-voltage cathodes (