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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government or any
agency thereof.
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Acronyms and Abbreviations

symbols

B a phase in a metal alloy

AE change in strain value

AHmM change in enthalpy

OEcs coherency strain

€ strain

e-N strain-number of cycles

K conductivity

n order-parameter field value

Y precipitates that are ordered FCC (L1,) structure and are coherent with the nickel-rich
{y} matrix having an FCC structure.

A wavelength

n coefficient of friction (when referring to a measure of interaction between two
surfaces).

Lix local diffusion potential for element “x”

pm micrometer

S} designation used for micro-scale intermetallic precipitates mostly located at the grain
boundaries in the as-cast state of aluminum.

o’ designation for nanoscale intermetallic precipitates present in the grain interiors of
cast-aluminum alloy.

p density

c standard deviation (when referring to statistical analysis).

c stress (or strength, when referring to physical properties).

c interfacial energy (when used in total energy calculations).

1D one-dimensional

2BK modeling parameter for double-baked.

2D two-dimensional

3D three-dimensional

M Minnesota Mining and Manufacturing Company (company’s former name)

304 steel containing chromium (between 18% and 20%) and nickel (between 8% and
10.5%).

310 a medium carbon austenitic stainless-steel for high-temperature applications, such as

furnace parts and heat-treatment equipment.

Acronyms and Abbreviations iii
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316L

1040
4140
4XT
Sxxx
6xxX

TXXX

A316L

A319

A356

A380

AA
AA
AA1100

AA2024

AA3003

AA4043

the low carbon version of 316 stainless-steel commonly used in chemical and
petrochemical industry, in food processing, pharmaceutical equipment, medical
devices, in potable water, wastewater treatment, in marine applications and
architectural applications near the seashore or in urban areas.

a carbon (non-alloy) steel formulated for primary forming into wrought products
a low alloy steel containing chromium, molybdenum, and manganese

4X Technologies

series designation for aluminum alloyed with magnesium

series designation for aluminum alloyed with magnesium and silicon

series designation for aluminum alloyed with zirconium

angstrom

a chromium-nickel-molybdenum austenitic stainless-steel developed to provide
improved corrosion resistance to Alloy 304/304L in moderately corrosive
environments.

aluminum alloy having a composition of 6% silicon and 3.5% copper alloy with
1.0 iron maximum that has excellent casting and machining characteristics and very
good corrosion resistance and weldability.

aluminum alloy with greater elongation, higher strength, and considerably higher
ductility than Alloy 356 because of lower iron content that is typically used for
airframe castings, machine parts, truck chassis parts, aircraft and missile components,
and structural parts requiring high-strength.

the most commonly specified aluminum alloy that has the best combination of
casting, mechanical, and thermal properties; exhibits excellent fluidity, pressure
tightness, and resistance to hot cracking; and is used for a wide variety of products
including chassis for electronic equipment, engine brackets, gearbox cases, houschold
furniture, power, and hand tools.

aluminum alloy
Aluminum Association (when used with a series e.g., AA1100 series)

a pure aluminum alloy with excellent forming characteristics and machinability,
especially when the alloy is machined in hard temper.

a heat-treatable aluminum alloy with copper as the primary alloying element that is
malleable when in the fully soft, annealed temper and can be heat-treated to high-
strength levels after forming widely used in aerospace applications.

aluminum alloy with moderate strength, which can be increased by cold working, and
good corrosion resistance.

a wrought aluminum alloy with good corrosion resistance typically used as filler
material for welding of aluminum parts containing high amounts of 4.5% and 6.0%
silicon.
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AA5052

AA5182

AAS5356

AA6022

AA6061

AA6063

AA6082

AA6111

AA7055

AAT075

AA7T085

ABAQUS or
Abaqus

ABS
ACEC
ACMZ

ACN
ACP
AddUp
AET
AFA
AFM
Ag
AHSS
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aluminum alloy most suited to forming operations, with good workability and higher
strength than that of either 1100 or 3003. Although not heat-treatable, it is stronger
than most of the Sxxx series of aluminums.

wrought aluminum alloy with good corrosion resistance and weldability containing
4.5% Mg, 0.35% Mn, and the balance aluminum.

an alloy in the wrought aluminum-magnesium family (5000 or 5xxx series) used
primarily used as welding filler.

heat-treatable low copper precipitation hardenable aluminum sheet alloy containing
0.8% to 1.5% silicon, 0.45% to 0.70% magnesium, and 0.25% zinc.

precipitation hardening aluminum alloy containing 0.8% to 1.2% magnesium and
0.4% to 0.8% silicon as its major alloying elements.

aluminum alloy consisting of aluminum, magnesium, and 0.5% silicon used for pipe,
railings, furniture, architectural extrusions, irrigation pipes, and transportation.

a medium strength alloy with excellent corrosion resistance and the highest strength
of the 6000 series alloys used as a structural alloy.

wrought aluminum alloy that is heat-treatable and possesses high-strength and
excellent stretch-forming characteristics containing 0.6% to 1.1% silicon, 0.5% to
1.0% magnesium, 0.1% to 0.45% manganese, 0.5% to 0.9% copper, and 0.15% zinc.

aluminum alloy containing zinc, magnesium, chromium, and copper as hardeners, as
well as small amounts of iron, silicon, manganese, and titanium with the highest total
strength, good fracture toughness, and a strong ability for fatigue crack propagation
with a microstructure that is resistant to intergranular fracture and corrosion.

aluminum alloy with strength comparable to many steels, good fatigue strength, and
average machinability.

a high-strength and high hardenability forging aluminum alloy that has excellent
fracture toughness.

software suite for finite element analysis and computer-aided engineering.

acrylonitrile-butadiene-styrene
Advanced Combustion Engine and Emission Control

designation for aluminum alloys containing aluminum, copper, manganese, and
zirconium

acrylonitrile

Advanced Carbon Products

Additive Manufacturing Laser Powder Bed System

Applied Engineering & Technology Integration, Inc.
Alumina-Forming Austenitics or Al,O3-forming austenitic alloys
antiferromagnetic

silver

advanced high-strength steel
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Al
AISI
Al
AlCu
AlLOs
AlgMn;

Alloy 380

Alloy 422

Alloy 626

Alloy 4043

Alloy 4140

Alloy 8620

AlLOs
Al-Si-Cu

Al-Ti
AM
AMG60

AMCOS

AMIPC
AMO
ANL
AOP
AP
APO
APS
APT

artificial intelligence

American Iron and Steel Institute
aluminum

aluminum-copper (2:1)
aluminum oxide

an intermetallic crucial for impurity control and corrosion resistance in aluminum
alloys.

one of the most commonly specified aluminum alloys with the best combination of
casting, mechanical, and thermal properties that exhibits excellent fluidity, pressure
tightness, and resistance to hot cracking and used for a wide variety of products
including chassis for electronic equipment, engine brackets, gearbox cases, household
furniture, power, and hand tools.

a hardenable, martensitic stainless-steel designed for service temperatures as high as
1200°F

a nickel-based superalloy that possesses high-strength properties and resistance to
elevated temperatures.

a wrought aluminum alloy with good corrosion resistance typically used as filler
material for welding of aluminum parts and contains between 4.5 and 6.0%) silicon.

a chromium-, molybdenum-, and manganese-containing low alloy steel that has high
fatigue strength, abrasion and impact resistance, toughness, and torsional strength.

a case-hardening steel alloy containing nickel, chromium, and molybdenum as
alloying elements with good strength and toughness properties.

aluminum oxide (or alumina)

aluminum-silicon-copper alloy is a cast-aluminum alloy widely used due to its high
castability and low density.

aluminum-titanium alloy
additive manufacturing or additive manufactured (when referring to processes).

a castable magnesium alloy with excellent ductility, superior energy absorbing
properties, and good strength and castability.

Active Monitoring of Composite Structures through Embedded Synthetic Fiber
Sensor

additively manufactured interpenetrating phase composite

Advanced Manufacturing Office

Argonne National Laboratory

annual operating plan

atmospheric plasma

atmospheric plasma oxidation

Advanced Photon Source (when referring to materials characterization)

atom probe tomography
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Ar

AS

ASM
ASTM
ASTM B221

ASTM B820

ASTM D635

ASTM D638

ASTM D2344

ASTM D3039

ASTM D3518

ASTM D4541

ASTM D5528

ASTM D6641

ASTM D7905

ASTM E290

ASTM E8-16a

ASTM E1354

ASTM E1922

ASTM G85

at.%
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argon

advancing side

American Society of Metals

American Society for Testing and Materials

American Society for Testing and Materials standard specification for aluminum and
aluminum alloy extruded bars, rods, wire, profiles, and tubes (metric).

American Society for Testing and Materials standard test method for bend testing
copper and copper alloy strip samples to determine product formability or the ability
to resist cracking when forming a bend around a specific radius.

American Society for Testing and Materials standard test method for determining the
rate of burning for plastics.

American Society for Testing and Materials standard test method to determine the
tensile strength of both reinforced and non-reinforced plastics.

American Society for Testing and Materials test standard designed to measure the
short-beam strength of high modulus fiber-reinforced polymer matrix composites.

American Society for Testing and Materials standard test method for tensile strength
of composite materials.

American Society for Testing and Materials standard test method for in-plane shear of
composite materials.

American Society for Testing and Materials standard test method for pull-off strength
of coatings using portable adhesion testers.

American Society for Testing and Materials standard test method for Mode I fracture
toughness of composite materials.

American Society for Testing and Materials standard test method for compressive
strength of composite materials.

American Society for Testing and Materials standard test method for Mode II fracture
toughness of composite materials.

American Society for Testing and Materials standard test method for determining the
ductility of metals through bend testing to provide a visual indication of the material's
ductility.

American Society for Testing and Materials standard test method for tension testing
of metallic materials.

American Society for Testing and Materials standard test method for fire-test-
response that measures the response of materials to a controlled level of radiant heat.

American Society for Testing and Materials standard test method for tensile and
compressive translaminar fracture toughness.

American Society for Testing and Materials test standard for cyclic acidified salt fog
(spray) testing.

atomic percent
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AUTO-SMART Accelent Technologies, Inc. is a product name for a sensor system that assists with
vehicle self-sufficiency.

AZ31B most widely available magnesium grade alloy, high-strength-to-weight ratio with a
composition of 2.5% to 3.5% aluminum and 0.7% to 1.3% zinc.

B

B boron

BAO0OS a standard aqueous binder from ExOne comprised of ~ 5.75% 2-butoxyethanol and ~
17.5 wt% ethanediol use in additive manufacturing.

BAAM big area additive manufacturing

BaTiO3 barium titanate

BCC or bee body-centered cubic

BD build direction

BDGE bisphenol diglycidyl ether

BF basalt fiber

bhp brake horsepower

Bi bismuth

BJIAM binder jet additive manufacturing

BK baked

BMEP brake mean effective pressure

BMS battery monitoring system

BMW Bayerische Motoren Werke AG; a German luxury automobile, motorcycle, and
engine manufacturing company.

BP budget period (when referring to funding)

BP button pull-out (when referring to weld testing)

BSE backscattered electron

BX bias-extension

c

°C degrees Centigrade

C carbon

C300 a steel alloy with excellent resistance to cracking from impact and compression that is
often used for dies and tooling.

Ca calcium

CaCl, calcium chloride

CA California

CA Composites Automation
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CAD

CAE
CAFE
CALPHAD
CAN-CFRC
CCF

CCT

Cd

Ce

CEL

CEM

CEM Corp.

CF
CFC
CF8C-Plus

CFD
CFR
CFRC
CFRP
CFTF
CG-MD
cm

cm?
CNF
CNG
CNT

Co

CO;
COMSOL

CONVERGE
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computer-aided design

computer-aided engineering

Corporate Average Fuel Efficiency

CALculation of PHAse Diagrams

covalent adaptable network-based carbon fiber-reinforced composites
continuous carbon fiber

cyclic corrosion test

cadmium

cerium

Coupled Eulerian-Lagrangian

computational electromagnetics model (or modeling)

a company formed in 1979 by a chemist, an electrical engineer, and a mechanical
engineer.

carbon fiber
carbon fiber composite

cast stainless-steel developed to provide higher temperature capability and reliability
for advanced diesel engine components.

computational fluid dynamics
Code of Federal Regulations
carbon fiber-reinforced composite
carbon fiber-reinforced polymer
Carbon Fiber Technology Facility
coarse-grained molecular dynamic
centimeter

square centimeter

carbon nanofiber

compressed natural gas

carbon nanotubes

cobalt

carbon dioxide

a cross-platform finite element analysis, solver, and multiphysics simulation software
that allows conventional physics-based user interfaces and coupled systems of partial
differential equations.

computational fluid dynamic software by Convergent Science Inc. with autonomous
meshing capabilities that eliminates the grid generation problems from the simulation
process.
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COSTS507
COVID
CpP

CP Al
CPEC
CPFEM
Cr
CRADA
Cr203
CRS
CRSS
CT

CT

CTE
CTP
CTPM
Cu

CYS

DADPM
DADPS
DAQ
DARPA
dB

DC
DCM
DCM

DDT
DFT
DIC
DICTRA

(European) Cooperation in Science and Technology 507
COronaVlIrus Disease

coach peel

commercially pure aluminum

close proximity electromagnetic carbonization

crystal plasticity finite element models

chromium

Cooperative Research and Development Agreement
chromium oxide

cold-rolled steel

critical resolved shear strength

computed tomography (when referring to an analytical method)
cross-tension (when referring to a test configuration)
coefficient of thermal expansion

coal tar pitch

coal tar pitch mesophase

copper

compressive yield strength

distance (when referring to a process parameter)
diamino diphenylmethane

diamino diphenylsulfone

data acquisition

Defense Advanced Research Projects Agency
decibels

direct current (when referring to electricity)
dichloromethane (when referring to a solvent)

dielectric cure monitoring (when referring to a method to measure thermoset or
composite cure state in real-time under actual process conditions.

dodecanethiol
density functional theory
digital image correlation

DIffusion-Controlled TR Ansformations in multicomponent systems, a software
diffusion module within ThermoCalc for accurate simulation of diffusion-controlled
reactions in multicomponent alloy systems.
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DIW
DMA
DMC
DMD
DNN
DOE
DOF
DP
DP590

DRX
DSC
dtex
Dy

E
E

EA
EBM
EBSD
ECAP
E-coat or e-coat
ED

ED
EDM
EDS
e.g.
E-EGR
EERE
EFP
EGR
EIS
EM
EMI
EoP
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direct ink writing

dynamic mechanical analysis

dough molding compound

digital micro-mirror device

deep neural network

U.S. Department of Energy (when referring to the agency)
direction of fiber

dual-phase

dual-phase steel with low tensile strength (590 MPa) and low yield frequently used in
automotive body structure applications requiring high-energy absorption

dynamic recrystallized
differential scanning calorimetry
decitex

dysprosium

stiffness or elastic modulus or Young’s modulus

energy adsorption

Eagle Bend Manufacturing

electron backscatter diffraction

equal channel angular pressing

electrophoretic coating

energy density (when referring to concentration of energy)
extrusion direction (when referring to ShAPE™ processing)
electro-discharge machining

energy dispersive spectroscopy

abbreviation meaning “for example”

enhanced exhaust gas recirculation

Office of Energy Efficiency and Renewable Energy
E-Form Plus

exhaust gas recirculation

electrochemical impedance spectroscopy

electromagnetic

electromagnetic interference

error of prediction

pulse energy

Acronyms and Abbreviations
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EPA
EPIKOTE™

EPMA
Er
ESE Carbon

et al.
eV
EV
EWI
Exp.

ex-situ

F
F

Fn

FADI-AMT LLC

FARO
FCAUSLLC
FCC or fec
FDS

Fe

FeCu

FE

FEA

FEI Company
FEM

FIB

FLC

FLD

FLIR

Environmental Protection Agency

EPIKOTE™ Resin 05475 with EPIKURE Curing Agent 05443: a system with low-
viscosity, a relatively long injection window, excellent wetting and adhesion to CFs,
and superior thermal and mechanical performance.

electro probe micro-analyzer
erbium

ESE Carbon company — supplier of carbon fiber composites and other services for
tailored-fiber placement, high-pressure resin infusion, engineering design, and
analysis.

abbreviation meaning “and others”

electron volt

electric vehicle (when referring to types of vehicles)
Edison Welding Institute

experimental

off-site or out of place

force
force normal to a plane

a limited liability company that does testing of automotive materials; the name is a
composite of the first name of the company’s president (Fadi Abu-Farha) and the
abbreviation for automotive materials testing.

Frasier and Raab Orthopedics

Fiat Chrysler Automobiles U.S. Limited Liability Company
face-centered cubic

flow-drill screw

iron

iron-copper alloy used for many applications due to its high-strength and electric and
thermal properties.

finite element

finite element analysis

Field Electron and Ion Company
finite element method (or model)
focused ion beam

forming limit curve

forming limit diagram

forward-looking infrared
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FMVSS
FSLW
FSP
F-SPR
FTIR
ft-1b

FY

Gic
G10

Ga

GB

g/cc or g/em’
GDOES

Gd

GEM

GF

GG-MIT
GHG

GHz

GM

GMT

G/NG

GO

GP

GPa

GPC
GT-POWER

h or hr
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Federal Motor Vehicle Safety Standard
friction stir linear welding

friction stir processing

friction self-piercing riveting
Fourier-transform infrared spectroscopy
foot pound(s)

fiscal year

gram(s)
Mode I interlaminar fracture toughness

a glass fiber and epoxy composite material which is compressed under extremely
high-pressure and heat cured to provide an extremely tough and durable material.

gallium

grain boundary

grams per cubic centimeter

glow discharge optical emission spectroscopy
gadolinium

gas emission model

glass fiber

Grossman Group at Massachusetts Institute of Technology
greenhouse gas

gigahertz

General Motors LLC

glass mat thermoplastic

£0/n0-go

graphene oxide

Guinier-Preston

gigapascals

gel permeation chromatography

simulation software by Gamma Technologies Inc. used to predict engine performance
quantities such as power, torque, airflow, volumetric efficiency, fuel consumption,
turbocharger performance and matching, and pumping losses.

hour(s)
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H13 a chromium, molybdenum, vanadium hot work tool steel with high hardenability and
excellent toughness.

H,O water

H>SO4 sulfuric acid

HAADF high-angle annular dark-field

HAZ heat-affected zone

HB Brinell hardness

HC honeycomb

HCF high-cycle fatigue

HCP hexagonal close-packed

HDDE heavy-duty diesel engine

HDG hot-dip galvanized (or hot-dip galvanizing)

HDPE high density polyethylene

Hf hafnium

HIP hot isostatic pressing

HiSiMo high silicon molybdenum

HK30Nb a grade of cast stainless-steel with a composition of 25% chromium, 21% nickel,
1.75% silicon, 1.5% manganese, and trace amounts of carbon, phosphorus, sulfur, and
molybdenum.

HMI human-machine interface

HNO; nitric acid

Ho holmium

HPC high-performance computing

HPDC high-pressure die-casting

HP-RTM high-pressure resin transfer molding

HRA Honda R&D Americas

HRB Hardness Rockwell — B scale

HRR heat release rate

HR-STEM high-resolution scanning transmission electron microscopy

HR-TEM high-resolution transmission electron microscopy

HS high-strength

HSLA high-strength low alloy

HSLA 340 steel intended for general presswork, bending, and forming

HT heat-treated

HTC high-temperature carbonization when referring to carbon fiber

HV Vickers hardness
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ie.

i3
IACMI
ICE
ICME
IDZ
IE
IEEE
IF
IFSS
ITHS
ILSS
M7

IMC
IMR
in.
in/min
in/sec
in-situ
IPF
ipm

ISO 5660

ISS

J
J

Jkg*K
JCP
JOEL JEM-2200FS
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hertz

abbreviation for “id est,” a Latin phrase meaning “that is”
five-door urban electric vehicle

Institute for Advanced Composites Manufacturing Innovation
internal combustion engine

integrated computational materials engineering
interdiffusion zone

Erichsen Index

Institute of Electrical and Electronics Engineers
interfacial

interfacial shear strength

Insurance Institute for Highway Safety

interlaminar shear strength

a continuous, high-performance intermediate modulus, polyacrylonitrile-based carbon
fiber manufactured by Hexcel Corporation.

intermetallic compound
internal mold release
inch

inches per minute
inches per second
on-site or in place
inverse pole figure
inches per minute

a test method for assessing the heat release rate and dynamic smoke production rate of
specimens exposed in the horizontal orientation to controlled levels of irradiance with
an external igniter.

ideal shear-stress

joule
joules per kilogram degree Kelvin
Joining Core Program

a state-of-the art analytical electron microscope equipped with a 200kV field emission
gun and an in-column energy filter that allows a zero-loss image resulting in clear
images with high contrast manufactured by JOEL Ltd.
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kQ

Kic
K2COs3
kDa

kg

kgF
kg/m?
kHz

kJ
kJ/m?
kJ/mol
kN
kN/min
kPa
Ksi, ksi, and kpsi
kw
kWh
kWh/kg
kW11
KY

Ll,
Ib.
LCF
LCCF
LD
LDH
LDPE
LFT
Li
LiCl
LIG
LightMAT

degree Kelvin

kiloohm

fracture toughness
potassium carbonate
kilodalton

kilogram

kilogram (force)
kilograms per cubic meter
kilohertz

kilojoules

kilojoules per square meter
kilojoules per mole
kilonewton

kilonewton per minute
kilopascal

kilopound per square inch
kilowatt

kilowatt-hour
kilowatt-hour per kilogram
kilowatt per liter

Kentucky

designation for the major strengthening phase precipitates of aluminum alloys
pound(s)

low cycle fatigue

low-cost carbon fiber

light-duty

limiting dome-height (when referring to materials testing)
low density polyethylene

long fiber thermoplastic

lithium

lithium chloride

laser-induced graphene

Lightweight Materials Consortium
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LiNO;
LLC
LLNL
L/min
LMP
LMPC
LPBF
LPPSC
LS
LS-DYNA
LSTC
LSW
LSS
LTC

5.8 3=

<

M2045
M42

Magna
mAH
MAP
MAS
MAT
MAT233+

MATLAB

MAS
MC
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lithium nitrate

limited liability company

Lawrence Livermore National Laboratory
liters per minute

Larson-Miller Parameter

Light Metals Core Program

laser powder bed fusion

low pressure precision sand-casting

lap-shear

advanced, general-purpose, multiphysics simulation software package
Livermore Software Technology Corporation
Lifshitz-Slyozov-Wagner

lap-shear strength

low-temperature carbonization

mass
meter

square meter

milestone (with a number, e.g., M1 for the first milestone)
milliohms

a vacuum-induction melted industrial-scale heat of Alloy 161

a molybdenum series high-speed steel alloy with an additional 8 or 10 percent cobalt
that is used in metal manufacturing industries because of its superior red hardness as
compared to more conventional high-speed steels

Magna International Inc.
milliamp hours

microwave assisted plasma
micro-alloyed steel
material

a LS-DYNA material model for hexagonal closed packet metals capable of describing
the yielding asymmetry between tension and compression for such materials and
considers anisotropy

MATrix LABoratory, a multi-paradigm numerical computing environment and
programming language

micro-alloyed steel

multicomponent carbides
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MCE multi-cylinder engine

MD molecular dynamic (when referring to computer simulation)
MD machine direction (when referring to direction of fabric weave)
MDX multidimensional luxury (Honda’s three-row mid-size luxury crossover SUV)
MeOH methanol

MESC multifunctional energy storage composites

meV millielectron volt(s)

MFI materials flow through industry

Mg magnesium

MgCOs3 magnesium carbonate

MgO magnesium oxide

Mg, Si magnesium silicide

Mg(OH), magnesium hydroxide

MgZn; dizinc magnesium

MHHPA methylhexahydrophthalic anhydride

MHz megahertz

min minute(s)

min. minimum

MIT Massachusetts Institute of Technology

mJ/m? milli-Joules per square meter

ML machine-learning

m/min meters per minute

mm millimeters

mm/min millimeters per minute

mm>/m cubic millimeters per meter

mm?*/Nm cubic millimeters per nanometer

mm/sec or mms’! millimeters per second

MMC metal matrix composites

Mn manganese

Mo molybdenum

M, term used for the mobility of oxygen

MOOSE multiphysics object-oriented simulation environment
MPa megapascals

MPA mercaptopropionic acid

MRD multiples of random distribution
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MSC
MSU
M-TOW
MTS
MTU
mV
mV/g
MX

MX or MXene

NaCl
NaHCO3
NapDA
Nb

NBK
NCF

Nd

NDE
NETL

nm
N/mm
NMP
NMR

NREL
NVH
nW/cc

Materials Sciences Corporation
Michigan State University
multi-tow

Material Testing Systems
Michigan Technological University
millivolts

millivolt per gram

a V- or W-rich carbide that has a face-centered cubic structure and commonly

precipitates as fine disks on (100) alpha

ceramics first discovered in 2011 that comprise one of the largest families of two-

dimensional materials

nitrogen

diatomic nitrogen

number of cycles to failure

sodium chloride

sodium bicarbonate

diaminonapthalene

niobium

not baked

non-crimp fabric

neodymium

nondestructive evaluation

National Energy Technology Laboratory
nickel

nanometer(s)

newtons per millimeter
N-methylpyrrolidone

nuclear magnetic resonance

neural network

National Renewable Energy Laboratory
noise, vibration, and harshness

nano Watts per cubic centimeter
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o
(@) oxygen
0, diatomic oxygen
OPDA 4,4'-diaminodiphenyl ether
OEM original equipment manufacturer
OM optical microscopy
ON Ontario
OPF oxidized precursor fiber
OPP out-of-plane printing
ORNL Oak Ridge National Laboratory
OSuU The Ohio State University
P
P (or p) pressure
PA polyamide
PAA poly(acrylic acid)
PA-6 polyamide 6 (or nylon 6)
PA-66 polyamide 66 (or nylon 66)
PALAPREG® an unsaturated polyester resin derived from maleic acid and glycols, dissolved in
P18-03 styrene with medium viscosity and high reactivity
PAM-RTM privileged access management - resin transfer molding
PAN polyacrylonitrile
PAPSC pressure-assistant precision sand-casting
Pb lead
PC polycarbonate
PDA phenylene diamine
PDAS primary dendrite arm spacing
PDF probability density function
PE polyethylene
PE-CAN polyester-based covalently adaptable network
PEDOT:PSS poly (3,4-ethylenedioxythiophene) polystyrene sulfonate
PEEK polyether ether ketone
PEGDA polyethylene glycol diacrylate
PEI polyetherimide
PEL potential energy landscape
PEN polyethylene naphthalate
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PET polyethylene terephthalate
PFIB plasma focused ion beam
pH quantitative measure of the acidity or basicity of aqueous or other liquid solutions
PI principal investigator
Pip piperazine
PLC Programmable Logic Controller
PM2.5 particulate matter smaller than 2.5 micrometers
PM10 particulate matter smaller than 10 micrometers
PMCP Propulsion Materials Core Program
PNNL Pacific Northwest National Laboratory
POM polarized optical microscopy
PP polypropylene (when referring to polymers)
PPA polyphthalamide
PPG Pittsburgh Plate Glass
p-PDA para-phenylenediamine
PPM Pinetree POSCO Mg (when referring to a source of magnesium)
PPS pedestrian protection system
Pt platinum
psi pounds per square inch
PTFE polytetrafluoroethylene
PTWA Plasma Transfer Wire-Arc
PUSP power ultrasonic-based surface processing
PVA polyvinyl alcohol
PVDF polyvinylidene difluoride
PZT lead zirconate titanate
Q
Q USAXS scattering vector
QEE-TECH® a cell used for rapid production of complex-shaped continuous fiber composite
reinforcements
QSP quasi-static pole
R
R radius
R resistance
R? coefficient of determination or linear fit score
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R3
rad/s
RAMACO
RAPID
R&D
R&DD
R/CPE

RE

ReaxFF
ReaxFF MD
RF

RFI

RH
RIVTAC®

rpm or RPM
RR

RR350

RS

RS232

RSW
1/t
RT
RTM
RVE

S
S

S/cm
S4CFRP
SAE

SAE J404

particle radius

radian per second

Ramaco Carbon LLC

a photopolymer resin that changes its physical properties when introduced to light
research and development

research, development, and deployment

resistance-constant phase element

rare-carth

reactive force field

reactive force field molecular dynamics

radio frequency

resin film infusion (when referring to a type of process used in molding polymers)
relative humidity

a high-speed process supplied by Bollhoff for joining aluminum, steel, plastics, and
non-ferrous metals, as well as for mixed joints, multilayer joints, and hybrid joints of
these materials

revolution(s) per minute

Rolls Royce

an alloy that evolved from a World War II aircraft application by Rolls Royce
retreating side

Recommended Standard 232, a standard for serial communication transmission of
data

resistance spot weld (or welding)
radius to thickness ratio

room temperature

resin transfer mold (or molding)

representative volume element

seconds

siemens per centimeter

self-sensing, self-sustaining carbon fiber-reinforced polymer
Society of Automotive Engineers

Society of Automotive Engineers standard used for determining the chemical
compositions of Society of Automotive Engineers alloy steels
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SAE J2522

SAE J2334

SAXS
SBIR
SBR
Sc

Scalmalloy®

SCE
SCF
SCF
SDAS
SDF
SECCM
SED
SEM
SF-TP
ShAPE™
SHM

Si

SiC
SiCP
SiO»
SLIC
SLPS
Sm

SMC

SNL
SOC
SOH
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Society of Automotive Engineers Recommended Practice for Dynamometer Global
Brake Effectiveness defining an Inertia Dynamometer Test procedure that assesses
the effectiveness behavior of a friction material regarding pressure, temperature and
speed for motor vehicles fitted with hydraulic brake actuation with the main purpose
of comparing friction materials under the most equal conditions possible.

SAE standard method which specifies the test conditions that are required to perform
a cyclic corrosion test that replicates, on an accelerated basis, an outdoor exposure

small-angle x-ray scattering

Small Business Innovative Research
styrene-butadiene rubber

scandium

a powder product designed to be processed using laser powder bed fusion additive
manufacturing

single-cylinder engine (when referring to internal combustion engines)
stress concentration factor

solidification cracking susceptibility
secondary dendrite arm spacing
Sudamericana De Fibras

scanning electrochemical cell microscopy
ShAPE™ extrusion direction

scanning electron microscope (or microscopy)
short-fiber-reinforced thermoplastic
shear-assisted processing and extrusion
structural health monitoring

silicon

silicon carbide

silicon carbide precursor

silicon oxide

sustainable lightweight intelligent composite
super solidus liquid phase sintering
samarium

sheet molding compound

stress-number of cycles

Sandia National Laboratories

state of charge

state of health
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SPD
SPG
SPH
SPP
SPR
SRI
SRNL
SRS
SRX
SS
SStAC
STEM
STF
SuRF
SUT

t
T

T (with a number,
e.g., 3T)

T.
Ta
T,
T
TS

T6

Ta
Tb
TBD
TCF
TD
TEA
TEM

severe plastic deformation

specific gravity

smooth particle hydrodynamics

solid-phase processing

self-pierce riveting or self-piercing rivet

Southern Research Institute

Savannah River National Laboratory

strain rate sensitivity

static recrystallization

stainless-steel

Stainless-Steel Alloy Corrosion (the name of a simulation tool)
scanning transmission electron microscope (or microscopy)
strain to failure

Scale-up Research Facility

shield under test

time
temperature

the thickness of the thinner of the two members being joined

crystallization temperature
degradation temperature
glass transition temperature
melting temperature

temper designation for aluminum that is cooled from an elevated temperature shaping
process then artificially aged

temper designation for aluminum that is heat-treated at a temperature between 325°F
and 400°F to increase the strength

tantalum

terbium

to be determined

Technology Commercialization Fund
transverse direction

technoeconomic analysis

transmission electron microscope (or microscopy)
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TFP tailored-fiber placement

TGA thermogravimetric analysis

T/H temperature/humidity

ThermoCalc software package for thermodynamic

Ti titanium

Ti-6Al-4V a Grade 5 alloy consisting of a two-phase o+f titanium alloy with aluminum as the

alpha stabilizer and vanadium as the beta stabilizer

TiB» titanium boride

TiO, titanium dioxide or titania

Tl thallium

Tm thulium

TMD transition metal dichalcogenide

TMF thermomechanical fatigue

TMP thermomechanical processing

TMPTA trimethylolpropane triacrylate

T™MS The Minerals, Metals & Materials Society
TPA terephthalic acid

TP thermoplastic

TPM thermal pseudo-mechanical

TPP triphenyl phosphate

TPU thermoplastic polyurethane

TRL technology readiness level

T-S traction-separation

TS thermoset

TS tensile strength

TuFF Tailorable universal Feedstock for Forming
typ. typical

TYS tensile yield strength

UCLA University of California — Los Angeles
ucCs ultimate compressive strength

UD unidirectional

UD-CCM University of Delaware Center for Composite Materials
UDRI University of Dayton Research Institute
UF University of Florida
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UHMWPE ultra-high molecular weight polyethylene

ulucC University of Illinois at Urbana-Champagne

uJ ultrasonic-based spot-joining

UK United Kingdom

UM University of Michigan-Dearborn

UMAT user-defined mechanical material behavior - a user subroutine that can be used to
define the mechanical constitutive behavior of a material

UNT University of North Texas

UP or UPenn University of Pennsylvania

uQ uncertainty quantification

U.S. United States

U.S. DRIVE U.S. Driving Research and Innovation for Vehicle efficiency and Energy
sustainability

USA United States of America

USAMP U.S. Automotive Materials Partnership

USAXS ultra-small-angle X-ray scattering

USCAR United States Council for Automotive Research

USFE unstable stacking fault energy

USW ultrasonic welding

UTS ultimate tensile strength

uv ultraviolet

UVA University of Virginia

uw University of Wyoming

\'

v velocity

v vanadium

A" volt or voltage (when referring to electricity)

v volume (when referring quantity) or wear volume (when referring to wear rate
calculations

V/g volts per gram

VaQ vacancy activation energy

VARTM vacuum-assisted resin transfer molding

VDA Verband der Automobilindustrie

VFAW vaporizing foil actuator welding

vol. volume
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vol.%
VS.

VTO

WAIM
WAXD
WI

WPI
WRI
W-s/mm

wt%

YAG
Yb
YS

ZAF

ZAXMEI11100

ZEK100

volume percent
versus

Vehicle Technologies Office

watts (when referring to electrical energy)
tungsten (when referring to the chemical element)
water-assist injection molding

wide-angle x-ray diffusion

Wisconsin

Western Polytechnic Institute

Western Research Institute

watts-second per millimeter

percent by weight

percent of crystallinity

cross car beam

xenon

extended finite element method
x-ray photoelectron spectroscopy

x-ray diffraction

yttrium
yttrium-aluminum-garnet
ytterbium

yield strength
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The most widely applied correction procedure for quantitative data about the sample
composition derived from the different is peak intensities by an extensive
mathematical process for matrix correction where the letters stand for and consider Z
- atomic number, which affects the penetration of incident electrons into the material,
A - absorption of X-rays in the specimen, on the path to the detector, and F -
fluorescence caused by other X-rays generated in the specimen.

magnesium alloy with a composition of Mg-1.0Zn-1.0A1-0.5Ca-0.4Mn-0.2Ce by

weight-percent

magnesium alloy composed of zinc, rare-earth elements, and zirconium
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7ZK60 magnesium wrought alloy consisting of primary matrix a (Mg) and the eutectic
Zn zine

ZOLTEK a producer of commercial carbon fiber

Zr zirconium

7ZX21 magnesium alloy consisting of Mg—2Zn—1Ca

7ZX30 magnesium alloy consisting of Mg-3Zn-0.2Ca

7ZX31 magnesium alloy consisting of Mg-3Zn-1Ca
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Executive Summary

The Materials Technology subprogram supports the Vehicle Technologies Office’s mission to accelerate the
deployment of clean energy technology toward achieving net-zero emissions in the transportation sector. The
Propulsion Materials research portfolio seeks to develop higher performance materials that can deliver the
required electrical, thermal, and strength properties needed to improve efficiency of vehicle powertrains
including power electronics. Lightweight Materials research portfolio enables improvements in vehicle
efficiency by providing properties that are equal to or better than traditional materials at a lower weight.
Because it takes less energy to accelerate a lighter object, replacing cast-iron and traditional steel components
with lightweight materials, such as advanced high-strength steels, magnesium (Mg) alloys, aluminum (Al)
alloys, and fiber-reinforced polymer composites can directly reduce a vehicle’s energy consumption. By 2025,
the Materials Technology research activities seek to enable a 25% weight-reduction of the glider for light-duty
vehicles including body, chassis, and interior as compared to a 2015 baseline at no more than a $5/Ib-saved
increase in cost.

Propulsion Materials

In fiscal year (FY) 2021, the Propulsion Materials portfolio began transitioning research from materials for
internal combustion engines to focus on materials improvements for electric vehicle powertrain components.
The work presented in this report represents the conclusion of efforts in four main areas: (1) use of multiscale
modeling to predict corrosion and oxidation of engine components and the material properties needed for
future engines; (2) development of new lightweight alloys for high-temperature engine components;

(3) additive manufacturing (AM) of powertrain alloys; and (4) lightweight high-efficiency engines for
medium-duty (MD) vehicles. In addition to these four main thrusts, work was completed on several
exploratory projects in novel materials, coatings, processing techniques, and characterization methods relevant
to propulsion materials.

The environment within an engine and exhaust system during operation is extremely harsh, with high
temperatures and pressures, combustion, and corrosive exhaust gases. This environment corrodes components,
including engine intake and exhaust valves, valve seats, and exhaust manifolds. Three projects aim to develop
practical and accurate models that can rapidly evaluate corrosion/oxidation of materials—such as stainless-
steel, nickel-chromium (NiCr) based alloys, and cast-Fe—and predict the components performance. These new
models will help decrease the time and cost of development as materials are selected for new engines that
operate at higher temperatures.

Automotive applications need low-cost, lightweight, high-temperature alloys to enhance efficiencies in
systems such as internal combustion engines. One project focuses on increasing the compositional range of the
Al-Fe-silicon (Si) system via alloy design and non-equilibrium processing, such as AM. Another effort seeks
to develop a fundamental understanding of the features that impart thermal stability to cast-Al precipitate
microstructures, such as those found in Al-Cu and Al-Cu-Mn-Zr (ACMZ) alloys. Some components, such as
exhaust valves, are exposed to even higher temperatures and the development of lower-cost, improved
wrought-processed Ni-based alloys is needed to achieve the combination of yield and fatigue strengths,
oxidation resistance, and cost specific to the operating characteristics and lifetime expectations. Pistons in
heavy-duty (HD) diesel also have unique requirements and researchers are investigating existing commercial
alloys, new developmental alloys, and alloys combined with thermal barrier coatings to enable increased
operating temperature while requiring only moderate cost increases. Last, corrosion-resistant coatings are also
being evaluated to determine whether the operating temperatures of alloys can be increased by improving
cyclic oxidation resistance without impacting the alloy high-cycle fatigue behavior.

AM offers unprecedented possibilities to fabricate unique and complex near net-shape components leading to
significant savings by decreasing tooling and materials cost, accelerating prototype development, offering
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unique properties, and increasing system efficiency through advanced designs not achievable via conventional
fabrication processes. In-depth understanding of the relationship between microstructure and processing
parameters could result in unique microstructures and enhanced or geometrically tailored properties for a wide
range of powertrain materials and components. Work in this area addresses the specific challenges and
opportunities associated with AM for future LD and HD engine and electronic components. Key factors, such
as cost, influence of feedstock characteristics, volatilization of species, cooling rates, non-equilibrium phases,
materials properties, non-uniform geometry-dependent thermal history, thermal cycling, etc., are assessed for
existing and new materials via both modeling and experimental studies.

While the market share of battery electric vehicles is increasing, most MD vehicles are projected to contain
conventional or hybrid internal combustion engines well beyond 2030. Improvements in engine efficiency and
reductions in powertrain weight have strong leverage to reduce vehicle-related CO» emissions for decades to
come. Two continuing projects will use advanced materials and weight- savings technologies to demonstrate
greater than 15% weight-reduction of the baseline engine while increasing efficiency. Approaches being
investigated include development of new high-strength and heat-resistant materials that can be incorporated
with novel metal casting and AM processes to produce highly durable engine structures to maximize
performance of the materials and systems with minimum mass and cost.

Lightweight Materials

In FY 2021, the lightweight materials portfolio included research in the following three areas: (1) improving
the properties and manufacturability of light metals, such as AHSS, Al alloys, and Mg alloys; (2) reducing the
cost of carbon fibers (CFs) and developing Integrated Computational Materials Engineering (ICME)
frameworks for manufacturing of polymer composites; and (3) developing novel joining methods to enable
multi-material systems.

Substitution of light metals for mild steel can result in weight-savings of 25%—-60% per component, which
increases fuel efficiency. However, there are several challenges to the increased use of light metals including
material cost, room temperature formability, and corrosion mitigation. In FY 2021, a new core research
program focused on the local modification of properties through processing of lightweight metals was
launched. Several projects in the Light Metals Core Program are working to lower the cost of Al by enabling
the broader use of lower-cost alloys which also simplifies manufacturing logistics. Similarly, the use of high-
performance Mg alloys in the automotive industry is currently limited due to the addition of costly rare-earth
(RE) elements, need for high-temperature forming, and difficulties in corrosion mitigation. Four projects in
this report address the challenges that Mg presents; one through alloy development and the other three through
novel processing methods that address both formability and corrosion.

Polymer composites also have the potential to reduce component weight by more than 60%. One of the main
barriers to widespread implementation is the high cost of CF, which is due in large part to the cost of input
material (precursor) and the CF conversion process. In addition to a successfully commercialized plasma
oxidation technology, several projects are addressing this challenge by developing higher throughput
conversion of CF, thus further lowering manufacturing costs and increasing production rates. Two projects are
investigating potential low-cost CF alternative precursors utilizing ICME models to guide their research to
meet DOE’s cost targets (no more than $5 per pound) and four projects are developing alternate or recycled
reinforcing fibers. Another challenge to implementation of polymer composites is related to the time required
to manufacture components. Three projects are investigating new manufacturing methods including AM and
tailored-fiber placement while additional projects are assessing opportunities to functionalize the fibers in
automotive components for sensing, part consolidation and energy storage.
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The most effective way to reduce the overall weight of a vehicle is to tailor the material selection to each
component’s needs. However, joining dissimilar materials to create a multi-material structure is a significant
challenge. In FY 2021, the Joining Core Program renewed its efforts by extending joining methods previously
developed to additional material pairs, advancing solid-state joining toward industry readiness, investigating
surface modifications to improve adhesion and corrosion resistance, and using artificial intelligence for weld
quality control. The methods developed in the Joining Core Program include solid-state welding, ultrasonic
welding, novel methods for mechanical fastening, and adhesives. Solid-state welding, including an impact
welding process investigated by one project, allows for joining materials with vastly different melting
temperatures, which is not possible with fusion welding. The portfolio also includes three projects that model
the effect of galvanic corrosion on a wide variety of joining methods and material combinations to predict the
effect on joint strength and fatigue life and one project that predicts failure of Al to steel joints.
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Vehicle Technologies Office Overview

Vehicles move our national economy. Annually, vehicles transport 12 billion tons of freight—more than $38
billion worth of goods each day'—and move people more than 3 trillion vehicle-miles.> Growing our economy
requires transportation, and transportation requires energy. The transportation sector accounts for
approximately 27% of total U.S. energy needs,’ and the average U.S. household spends over 17% of its total
family expenditures on transportation,* making it, as a percentage of spending, the most costly personal
expenditure after housing. Transportation is critical to the overall economy, from the movement of goods to
providing access to jobs, education, and healthcare.

The Vehicle Technologies Office (VTO) funds research, development, demonstration, and deployment
(RDD&D) of new, efficient, and clean mobility options that are affordable for all Americans. VTO leverages
the unique capabilities and world-class expertise of the National Laboratory system to develop new
innovations in vehicle technologies, such as advanced battery technologies (including automated and
connected vehicles as well as innovations in efficiency-enhancing connected infrastructure); innovative
powertrains to reduce greenhouse gas and criteria emissions from hard-to-decarbonize off-road, maritime, rail,
and aviation sectors; and technology integration that helps demonstrate and deploy new technology at the
community level. Across these technology areas and in partnership with industry, VTO has established
aggressive technology targets to focus RDD&D efforts and ensure there are pathways for technology transfer
of federally supported innovations into commercial applications.

VTO is uniquely positioned to accelerate sustainable transportation technologies due to strategic public-private
research partnerships with industry (e.g., U.S. DRIVE, 21 Century Truck Partnership) that leverage relevant
expertise. These partnerships prevent duplication of effort, focus DOE research on critical RDD&D barriers,
and accelerate progress. VTO advances technologies that assure affordable, reliable mobility solutions for
people and goods across all economic and social groups; enable and support competitiveness for industry and
the economy/workforce; and address local air quality and use of water, land, and domestic resources.

Annual Progress Report

As shown in the organization chart (below), VTO is organized by technology area: Batteries & Electrification
R&D, Materials Technology R&D, Advanced Engine & Fuel Technologies R&D, Energy Efficient Mobility
Systems, and Technology Integration. Each year, VTO’s technology areas prepare an Annual Progress Report
(APR) that details progress and accomplishments during the fiscal year. VTO is pleased to submit this APR for
Fiscal Year (FY) 2021. The APR presents descriptions of each active project in FY 2021, including funding,
objectives, approach, results, and conclusions.

1 U.S. Department of Transportation, Freight Analysis Framework Version 5.0 Data Tabulation Tool.
2 U.S. Department of Transportation, March 2022 Traffic Volume Trends, Figure 1.

3 U.S. Energy Information Administration. Monthly Energy Review, 2022, https://www.eia.gov/totalenergy/data/monthly/index.php.

4 Davis, Stacy C., and Robert G. Boundy. Transportation Energy Data Book: Edition 39. Oak Ridge National Laboratory, 2020,
https://doi.org/10.2172/1767864.
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Materials Technology Program Overview

Introduction

The Materials Technology subprogram supports the VTO goals of achieving 100% decarbonization of the
transportation sector by 2050. This ambitious goal will be realized through the increased deployment of
electric and hydrogen fuel cell vehicles. Materials play an important role in increasing the efficiency of electric
vehicles through weight-reduction as well as enabling additional functionality such as faster charging and new
sensing technologies. Lighter weight vehicle structures and electric drivetrains will require fewer batteries to
achieve the same range, which in turn reduces battery cost, material needs, and reduces the greenhouse gas
emissions from battery production. Functional materials with improved properties such as electrical
conductivity, thermal conductivity, and unique sensing capabilities will enable innovations in charging and
autonomous vehicles. The materials and manufacturing methods used to make vehicles also contribute to
greenhouse gases and the Materials Technology subprogram supports research, development, and deployment
to increase recyclability and reduce the overall embodied energy of vehicles. The Materials Technology
subprogram accomplishes its technical objectives through research programs with academia, National
Laboratories, and industry.

The Propulsion Materials portfolio is closely aligned with other VTO subprograms to identify critical materials
needs for next-generation high-efficiency powertrains for both HD and LD vehicles. Strategies for achieving
high-efficiency powertrains includes addressing key challenges in electrical conductivity, thermal
conductivity, magnetic materials, and high-temperature operation currently limiting advances in electric
powertrains and wireless charging. The Powertrain Materials Core Program is a national laboratory consortium
that targets critical powertrain components based on thermal loading, structural, and electrical requirements
and utilizes an ICME approach to link advanced characterization to high-performance computing methods to
accelerate development of new material families. In FY 2021, the program has partnered with the
Electrification subprogram to focus new materials development efforts on challenges facing power electronics
for electric vehicles.

The Lightweight Materials team works closely with industry through the U.S. DRIVE partnership to
understand LD vehicle structural weight-reduction goals and to identify technical challenges that prevent the
deployment of lightweight materials. The most promising and likely approach for lightweighting is a multi-
material structure, which focuses on the use of the right material for the application. The Lightweight Materials
research portfolio addresses significant techno