2005
Annual Progress Report

PROGRESS REPORT FOR
ADVANCED COMBUSTION
ENGINE TECHNOLOGIES

Less dependence on foreign oil, and
eventual transition to an emissions-free,
petroleum-free vehicle

FY 2005

Progress Report for Advanced Combustion Engine Technologies

Energy Efficiency and Renewable Energy
Office of FreedomCAR and Vehicle Technologies

Approved by Gurpreet Singh

January 2006
Acknowledgement

We would like to express our sincere appreciation to QSS Group, Inc., New West Technologies, LLC, and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report.

In addition, we would like to thank all the participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report.
CONTENTS

I Introduction ... 3

II Advanced Combustion and Emission Control Research for High-Efficiency Engines 23

II.1 Stretch Efficiency in Combustion Engines with Implications of New Combustion Regimes (Oak Ridge National Laboratory) ... 25

II.2 Advanced Combustion and Emission Control Research for High-Efficiency Engines 31

II.A Light-Duty Diesel Spray Research Using X-Ray Radiography (Argonne National Laboratory) .. 31

II.A.2 X-Ray Studies of Heavy-Duty Injector Spray Characteristics (Argonne National Laboratory) .. 36

II.A.3 Low-Temperature Automotive Diesel Combustion (Sandia National Laboratories) 40

II.A.4 Characterization of Early-Injection, Low-Temperature Heavy-Duty Diesel Combustion Using Multiple Optical Diagnostics (Sandia National Laboratories) 45

II.A.5 Using Non-Traditional Diesel Fuels and Optical Diagnostics to Understand and Optimize In-Cylinder Processes (Sandia National Laboratories) 51

II.A.6 Soot Formation under High-EGR, LTC Conditions (Sandia National Laboratories) 58

II.A.7 Achieving High-Efficiency Clean Combustion (HECC) in Diesel Engines (Oak Ridge National Laboratory) .. 63

II.A.8 Large Eddy Simulation Applied to Hydrogen and Low-Temperature Engine Combustion Research (Sandia National Laboratories) .. 67

II.A.9 Detailed Modeling of HCCI and PCCI Combustion and Multi-Cylinder HCCI Engine Control (Lawrence Livermore National Laboratory) 73

II.A.10 In-Cylinder Combustion Visualization in a Non-Optical Engine (Argonne National Laboratory) ... 78

II.A.11 HCCI and Stratified-Charge CI Engine Combustion Research (Sandia National Laboratories) .. 82

II.A.12 Automotive HCCI Combustion Research (Sandia National Laboratories) 89

II.A.13 HCCI Engine Optimization and Control Using Diesel Fuel (University of Wisconsin-Madison) .. 94

II.A.14 HCCI Engine Optimization and Control Using Gasoline (University of Michigan) 104

II.A.15 Spark-Assisted HCCI Combustion (Oak Ridge National Laboratory) 112

II.A.16 Development of High-Efficiency Clean Combustion Engine Designs for Spark Ignition and Compression Ignition Internal Combustion Engines (General Motors Corporation) ... 116

II.A.17 KIVA-4 Development (Los Alamos National Laboratory) 123

II.A.18 Chemical Kinetic Modeling of Combustion of Automotive Fuels (Lawrence Livermore National Laboratory) ... 127

II.A.19 Free Piston Engine Research (Sandia National Laboratories) 131

II.A.20 In-Cylinder Hydrogen Combustion Visualization in a Non-Optical Engine (Argonne National Laboratory) ... 134

II.A.21 Preliminary Evaluation of Mixture Formation and Combustion in a Hydrogen Engine using OH Chemiluminescence (Sandia National Laboratories) 137
CONTENTS (Continued)

II Advanced Combustion and Emission Control Research for High-Efficiency Engines (Continued)

II.B Energy-Efficient Emission Controls ..141

II.B.1 Fundamental Studies of NOx Adsorber Materials
(Pacific Northwest National Laboratory) ... 141

II.B.2 Mechanisms of Sulfur Poisoning of NOx Adsorber Materials
(Pacific Northwest National Laboratory) ... 151

II.B.3 Dedicated and Regenerable Sulfur Traps for Diesel Engine Control
(Pacific Northwest National Laboratory) ... 158

II.B.4 Characterizing Lean NOx Trap Regeneration and Desulfation
(Oak Ridge National Laboratory) ... 163

II.B.5 Advanced Engine/Aftreatment System R&D (Oak Ridge National Laboratory) 169

II.B.6 Advanced CIDI Emission Control System Development
(Ford Research & Advanced Engineering) ... 175

II.B.7 Development of Improved SCR Catalyst (Sandia National Laboratories) 178

II.B.8 Quantitative Identification of Surface Species on Lean NOx Traps,
DOE Pre-Competitive Catalyst Research (Oak Ridge National Laboratory) 183

II.B.9 NOx Control and Measurement Technology for Heavy-Duty Diesel Engines
(Oak Ridge National Laboratory) ... 189

II.B.10 Off-Highway Engine Emission Control with High System Efficiency (CRADA
with John Deere Product Engineering Center)(Oak Ridge National Laboratory) 194

II.B.11 Discovery of New NOx Reduction Catalysts for CIDI Engines Using
Combinatorial Techniques (General Motors Corporation) 197

II.B.12 Efficient Emissions Control for Multi-Mode Lean DI Engines
(Oak Ridge National Laboratory) ... 201

II.B.13 Advanced NOx Control for Diesel Engines Based on Hydrocarbon
Oxygenates as Active Reductants over Lean-NOx Catalysts
(Pacific Northwest National Laboratory) ... 206

II.B.14 NOx Control for High Power Density Hydrogen Engine
(Oak Ridge National Laboratory) ... 214

II.B.15 Cross-Cut Lean Exhaust Emission Reduction Simulation (CLEERS)
(Oak Ridge National Laboratory) ... 218

II.B.16 CLEERS DPF Modeling (Pacific Northwest National Laboratory) 227

II.B.17 Development of Metal Substrate for DeNOx Catalysts and Particulate Traps
(Caterpillar Inc.) .. 233

II.B.18 NOx Reduction in Diesel Exhaust Using Ceramic Catalysts (Noxtech, Inc) 236

II.B.19 Innovative Emission Control Device Renewal (General Motors Corporation) 240

II.C Enabling Technologies ... 243

II.C.1 NOx Sensor for Direct Injection Emission Control (Delphi Corporation) 243

II.C.2 Small, Inexpensive Combined NOx and O2 Sensor (CeramPhysics, Inc.) 248

II.C.3 Particulate Matter Sensor for Diesel Engine Soot Control (Honeywell Inc.) 252

II.C.4 Variable Compression Ratio Engine (Envera LLC) ... 256
CONTENTS (Continued)

III Heavy Truck Engine .. 259
 III.1 Heavy Truck Engine Project (Cummins Inc.) 261
 III.2 Heavy Truck Engine Project (Heavy Truck Clean Diesel, HTCD) (Caterpillar Inc.) 266
 III.3 Thermal Efficiency Improvement While Meeting Emissions of 2007, 2010 and Beyond (Detroit Diesel Corporation) .. 271

IV Waste Heat Recovery .. 277
 IV.1 Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology
 (Caterpillar Inc.) ... 279
 IV.2 Thermoelectric Technology for Automotive Waste Heat Recovery
 (General Motors Corporation) .. 282
 IV.3 High-Efficiency Thermoelectric Waste Energy Recovery System for Passenger
 Vehicle Applications (BSST LLC) ... 287
 IV.4 Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and
 Recovery of Waste Heat from Heavy-Duty Trucks (United Technologies Research Center) 291
 IV.5 Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle
 (Michigan State University) ... 296
 IV.6 Diesel Truck Thermoelectric Generator (Hi-Z Technology, Inc.) ... 301

V Off-Highway Engine Efficiency R&D .. 307
 V.1 Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction
 (Cummins Inc.) .. 309
 V.2 21st Century Locomotive Technology: Advanced Fuel Injection (GE Global Research) 313
 V.3 Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine
 (John Deere Product Engineering Center) ... 316

VI Health Impacts .. 321
 VI.1 Heavy-Duty Diesel PM and Toxic Emissions Health Effects at the
 Watt Road Environmental Laboratory (Oak Ridge National Laboratory) .. 323
 VI.2 Weekend Ozone Effect Studies (National Renewable Energy Laboratory) 328
 VI.3 Health Impacts: Respiratory Response (Loveland Respiratory Research Institute) 332

VII Abstracts of Newly Awarded Projects 337
 VII.A High-Efficiency Clean Combustion .. 339
 VII.A.1 Low-Temperature Combustion Using Pre-Mixed Charge Compression Ignition
 (Cummins Inc.) .. 339
 VII.A.2 Development of High-Efficiency Clean Combustion Engine Designs for Spark
 Ignition and Compression Ignition Internal Combustion Engines
 (General Motors Corporation) .. 340
 VII.A.3 Development of Enabling Technologies for High-Efficiency, Low-Emissions
 Homogeneous Charge Compression Ignition Engines (Caterpillar Inc.) 341
 VII.A.4 Low-Temperature Combustion Demonstrator for High-Efficiency Clean
 Combustion (International Truck and Engine) .. 342
CONTENTS (Continued)

VII Abstracts of Newly Awarded Projects (Continued)

VII.A High-Efficiency Clean Combustion (Continued)

VII.A.5 Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel
Economy over Alternative Technologies for Meeting 2010 On-Highway
Emissions Standards (John Deere Product Engineering Center)343
VII.A.6 Demonstration of Air-Power-Assist (APA) Engine Technology for Clean
Combustion and Direct Energy Recovery in Heavy-Duty Applications
(Mack Trucks, Inc.) ..344

VII.B Waste Heat Recovery ...345
VII.B.1 Exhaust Energy Recovery (Caterpillar Inc.) ...345
VII.B.2 Electrically Coupled Exhaust Energy Recovery System Using a Series Power
Turbine Approach (John Deere Product Engineering Center)346
VII.B.3 Waste Heat Recovery for Internal Combustion Engines (Cummins Inc.)347
VII.B.4 Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized
via Unique Energy Recovery Turbines and Facilitated by a High Efficiency
Continuously Variable Drivetrain (Mack Powertrain Division of Volvo Powertrain
Corporation) ...348

VII.C Enabling Technologies ...349
VII.C.1 EGR Control for Emissions Reduction Using Fast-Response Sensors
(Honeywell International) ...349
VII.C.2 Low-Cost Fast-Response Actuator for Variable Compression Ratio Engines
(Envera LLC) ...350
VII.C.3 Variable Valve Actuation (Delphi Automotive Systems, LLC)351

VII.D University Research ..352
VII.D.1 A University Consortium on Low-Temperature Combustion for High-Efficiency,
Ultra-Low Emission Engines (University of Michigan) ..352
VII.D.2 Optimization of Low-Temperature Diesel Combustion (University of Wisconsin).....353
VII.D.3 Low-Temperature Combustion with Thermo-Chemical Recuperation to
Maximize In-Use Engine Efficiency (West Virginia University Research Corp.)354
VII.D.4 Kinetic and Performance Studies of the Regeneration Phase of Model
Pt/Rh/Ba NOx Traps for Design and Optimization (University of Houston)355
VII.D.5 Investigation of Aging Mechanisms in Lean NOx Traps (University of Kentucky)356
VII.D.6 Improved Engine Design Concepts Using the Second Law of Thermodynamics:
Reducing Irreversibilities and Increasing Efficiencies (Texas A&M University)357
VII.D.7 High-Compression-Ratio, Atkinson-Cycle Engine Using Low-Pressure Direct
Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization
Current and Forward-Backward Mass Air Flow Sensor Feedback
(Michigan State University) ..358

VII.E Health Impacts ...359
VII.E.1 The Advanced Collaborative Emissions Study (ACES) (Health Effects Institute) ...359

VIII Acronyms and Abbreviations ..361
IX Author Index ...367