State-of-the-art and emerging truck engine technologies

Prof. Michael Schittler
DaimlerChrysler AG

9th Diesel Engine Emission Reduction Conference
August 24 - 28, 2003
Newport, Rhode Island
State-of-the-art and emerging truck engine technologies for optimized performance, emissions and life-cycle-costs

- The challenge for commercial vehicles engine R&D
- Engine technology development until today
- Aftertreatment systems as emerging technologies also for commercial vehicle Diesel engines
- What will be the right technology for US MY07?
- Prerequisites to be established
Engine R&D efforts have to focus on bridging ecological and economical requirements of all stakeholders

<table>
<thead>
<tr>
<th>Ecology</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Society</td>
<td>Truck Operator</td>
</tr>
<tr>
<td>- Gaseous and PM Emissions</td>
<td>- Life-Cycle Costs</td>
</tr>
<tr>
<td>- CO₂-Emissions</td>
<td>- Profitability</td>
</tr>
<tr>
<td>- Noise</td>
<td>- Nation</td>
</tr>
<tr>
<td></td>
<td>- Haulage Costs</td>
</tr>
</tbody>
</table>
Life-Cycle-Costs of class 8 trucks in Europe

Costs for fuel, purchase and maintenance/service are highly influenced by engine design.

- **Salary**: 30.9%
- **Fuel**: 29.3%
- **Maintenance & Service**: 14.8%
- **Tires**: 7.2%
- **Oil**: 7.3%
- **Taxes/Insurances**: 1.5%
- **Interest & depreciation**: 9.0%

Time of use: 4 years, mileage/year: 95,000 mls (app. 150,000 km), fuel consumption: 7.35 mpg (32.5 l/100 km)

9th Diesel Engine Emission Reduction Conference 2003
Worldwide emission standards and respective test cycles

For Europe, NAFTA and Japan different test cycles are mandatory with different weightings regarding engine speed and load.
Trade-off between nitric oxides (NO_x), fuel consumption (bsfc) and particulates (PM)

Traditional measures aiming at lower peak combustion temperature reduce fuel efficiency and increase PM- and CO$_2$-emission
European OEMs have been able to increase transport efficiency in spite of more stringent emissions regulations.
Measures to fulfill emission standards

Combustion Technologies: Injection, Combustion Chamber, Turbocharging

- Charge Air Cooling
- Electronic Engine Control
- Exhaust Gas Recirculation
- Particulate Trap
- NOx Aftertreatment

Euro 0, Euro 1, Euro 2, Euro 3, Euro 4, Euro 5

Today’s exhaust aftertreatment systems for Diesel engines

NOx aftertreatment
- Adsorber catalyst
- Selective Catalytic Reduction (SCR)

PM aftertreatment
- Continuously Regenerating Diesel Particle Filter (CDPF)
Aftertreatment systems - mode of operation
Adsorber catalyst

PHASE 1: Regular operating conditions

- Air-To-Fuel Ratio (AFR)>1
 - Storage of NOx on catalyst surface:
 - Oxidation from NO to NO₂
 - Production of nitrate (out of NO₂)
 - Storage of produced nitrate

PHASE 2: Brief enrichment (ECU controlled)

- AFR<1
 - Reduction of stored nitric oxides:
 - Back-formation of nitrate to NO
 - Reaction of NO with CO and H₂
 - \(2\text{NO} + 2\text{CO} \rightarrow 2\text{CO}_2 + \text{N}_2\)
 - \(2\text{NO} + 2\text{H}_2 \rightarrow 2\text{H}_2\text{O} + \text{N}_2\)
The SCR technology uses urea, respectively ammonia (which forms after decomposition of urea at temperatures >200°C) to convert nitric oxides (NO, NO₂) into harmless molecular nitrogen N₂ and water.

\[
\begin{align*}
\text{NO} & \quad + \quad \text{hydrogen} \quad + \quad \text{ammonia} \\
4 \text{ NO} & \quad + \quad \text{O}_2 \quad + \quad 4 \text{ NH}_3 \\
2 \text{ NO}_2 & \quad + \quad \text{O}_2 \quad + \quad 4 \text{ NH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{nitrogen} & \quad + \quad \text{water} \\
4 \text{ N}_2 & \quad + \quad 6 \text{ H}_2\text{O} \\
3 \text{ N}_2 & \quad + \quad 6 \text{ H}_2\text{O} \\
\end{align*}
\]
Aftertreatment systems - mode of operation
Continuously regenerating Diesel particle filter

Combination of oxidation catalytic converter and soot trap

\[
\begin{align*}
2\, CO + O_2 & \rightarrow 2\, CO_2 \\
4\, HC + 5\, O_2 & \rightarrow 2\, H_2O + 4\, CO2 \\
2\, NO + O_2 & \rightarrow 2\, NO_2 \\
C + 2\, NO_2 & \rightarrow CO_2 + 2\, NO
\end{align*}
\]
Versions of particulate traps under evaluation

Sintered metal filter with a low number of filter plates

Monolith with a high number of filter channels

Courtesy Johnson Matthey

Courtesy Purem
Strategies for emission reduction for US MY07

- Increased EGR
- Status US'04
- Advanced injection timing
- SCR catalyst, adsorber catalyst
- Particulate filter
The EGR system for US’07 features approximately twice the EGR rates of US’04.

EGR rates 2002/04: 10...13%
required EGR rates for 2007: 18...25%
High EGR radiator design comparison for an axle forward truck

2002/2004 design
- crossflow radiator

2007 design
- downflow radiator
- splayed frame
- interference w/ axle forward springs
The SCR and CDPF approach

- Engine ECU
- Intercooler
- NH$_3$ sensor
- SCR catalyst
- CDPF
- aqueous urea solution tank
- Urea injection

Feedback from NH$_3$ sensor leads to engine ECU.
Timelines of different emission strategies

2002 2003 2004 2005 2006 2007 2008 2009

US
- NOx storage catalyst (adsorber catalyst) & CDPF technology with medium EGR
- SCR & CDPF technology with no EGR
- High EGR & CDPF technology

EURO4
- SCR technology

US’07
- Adv. SCR & CDPF with medium EGR

EURO5
- Adv. SCR technology

US’10
- Adv. SCR & CDPF w/ medium EGR

Europe
- SCR technology

Adv. SCR technology

9th Diesel Engine Emission Reduction Conference 2003
Fuel consumption and CO₂ emission of MY 07 emission strategies

- MY2004
- MY2007 High EGR & CDPF
- MY2007 SCR & CDPF

Relative fuel consumption/CO₂ emission graph showing:
- Basis: 3% penalty
- MY2007 High EGR & CDPF: 6% advantage
The SCR & CDPF technology reduces fuel consumption and life cycle costs; the cost advantage depends on the urea costs.

Life-Cycle-Cost comparison for a long haul truck
(only costs are considered, no prices that include profit and overhead)

* no costs of the truck and trailer, with oil exchange costs included
Installation of SCR & CDPF technology in a demonstrator truck
Two issues need to be resolved in order to enable the introduction of SCR:

- urea supply infrastructure
- securing that system is tamper-proof and working correctly
Urea is

- colorless
- non-toxic
- used in food, agricultural fertilizers, cosmetics, pharmaceuticals etc.
- available at required quantity; installed production capacity allows CV supply w/o additional investments

AdBlue is

- the European trade name for 32.5% aqueous urea solution
How does Europe approach the installation of a supply infrastructure for urea solution

- The urea supply industry has a major interest to establish a urea infrastructure.
- 80% of the entire heavy duty truck diesel fuel is being distributed by local fuel stations which are operated by the fleets themselves.
- Fleet owners will install urea filling stations at their places. Financial support through urea manufacturing companies is in discussion.
- Large highway truck-stops will be equipped with urea filling stations. Other fuel filling stations will install urea supply gradually.

- supply of the most important intersections
- supply along the most important routes
- area-wide supply with minimal distances
Local AdBlue filling stations

AdBlue
small filling station

AdBlue
supply unit: 265 gals (1000 l)
“Economics favor the SCR/urea technology over the NOx adsorber technology for most applications of long-haul and vocational trucks in the long-term.”

“Economics also generally favor the SCR/urea technology over the NOx adsorber technology in the near-term if early NOx adsorbers have a high fuel penalty (≈5%) and a higher initial incremental cost.”

The study furthermore states that provision of Urea is both possible and economically reasonable if “strong signals regarding manufacturers intentions to provide SCR-equipped trucks” are sent to truck operators and other stakeholders starting 3rd quarter 2003 and no later than mid-2004.

Remark: TIAX is a consulting firm which formed from Arthur D. Little‘s Technology and Innovation business.
The SCR and CDPF approach

- Engine ECU
- Intercooler
- NH₃ sensor
- SCR catalyst
- CDPF
- Temperature sensors
- Urea injection
- Aqueous urea solution tank
- Feed back from NH₃ sensor
Emission technology comparison
preliminary estimates as of June 2003

<table>
<thead>
<tr>
<th></th>
<th>High EGR</th>
<th>SCR</th>
<th>NOx Adsorber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Economy</td>
<td>-3%</td>
<td>+6%</td>
<td>-3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(app. 6% urea usage)</td>
<td></td>
</tr>
<tr>
<td>Cooling Requirements</td>
<td>up to 55%</td>
<td>-20%</td>
<td>0%</td>
</tr>
<tr>
<td>Power Density</td>
<td>-5%</td>
<td>+6%</td>
<td>0%</td>
</tr>
<tr>
<td>Weight</td>
<td>+50 lbs.</td>
<td>-400 lbs.</td>
<td>+200 lbs.</td>
</tr>
<tr>
<td>Oil Exchange Intervals</td>
<td>1X</td>
<td>2X</td>
<td>1X</td>
</tr>
<tr>
<td>Urea Infrastructure</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Driver’s Responsibility</td>
<td>None</td>
<td>Urea Refill</td>
<td>None</td>
</tr>
</tbody>
</table>