Control-Oriented Modeling for HCCI Combustion and Multi-Cylinder HCCI Experimental Activities The Ohio State University Center for Automotive Research

Motivation for the Control-Oriented Approach	Goals of Research and the Approach	Experimental Setup
 HCCI with Diesel fuel has been experimentally demonstrated by many groups to be a worth-while combustion regime: Very low NO_x emissions Very low PM emissions Reasonable efficiency One of the major challenges in the implementation of HCCI in practice is combustion control: Unlike SI and CIDI, there is no command having direct control of ignition timing (like spark timing or injection timing.) Maintaining control over combustion timing and burn rate is critical for achieving high efficiency operation and reasonable engine loads with acceptable cylinder pressure levels. Combustion timing and burn rate are dictated by the time/temperature/pressure history of the air-fuel-residual charge as well as the composition of the charge. With the loss in direct control over combustion, the engine control algorithm is forced to rely on actuators that act on the parameters that influence combustion indirectly: external EGR, trapped residual, charge temperature, boost pressure, and valve timing. These indirect factors have many interrelations and overlap in their ability to control HCCI combustion, therefore achieving the desired outcome can be achieved by many different paths Just as Control-Oriented Modeling is increasingly vital for advanced gasoline engines with similarly complex actuator sets, it will have similar application to HCCI combustion control. 	 The goal of the research is to develop a <i>simple</i> engine model that is capable of capturing the <i>relevant</i> behavior of the engine: A "Simple" Model: The model must be capable of running in real-time or faster "Relevant" Behavior: The model must accurately capture the dynamic, mean-value behavior of the intake and exhaust system; the combustion model must accurately predict the heat release of the fuel with specific attention to combustion phasing With a model of this type, it is possible to rapidly investigate the impact of actuators on HCCI combustion, the sensitivity of the combustion to various factors, and explore control concepts The approach taken to achieve the goals builds on the successes of two-decades of similar modeling in the gasoline engine field: Mean-Value Engine Modeling: It has been demonstrated that models representing the bulk flow characteristics of the intake and exhaust are sufficiently accurate for control needs. Such mean-value models, such as the classic manifold filling model with volumetric efficiency, are present in some form in virtually every gasoline engine control algorithm. Single-Zone Combustion Models: It has also been demonstrated by OSU and others, that the traditional method of modeling heat release using Wiebe functions can be extended to HCCI combustion. Coupling of the Above: A MVEM can give the conditions at intake valve closing, which 	 Experimental facilities for this project are housed at the OSU Center for Automotive Research (see Figure 3.) Experiments conducted on 2.5L CIDI engine with the following minor modifications: The intercooler and EGR cooler of the engine were maintained The EGR valve was upgraded to a higher flow, electronically controlled model A VGT was retrofitted onto the engine in place of the stock, waste-gated model The stock cam-timing was maintained The engine maintained a stock compression ratio of 17.5:1 HCCI fuel injection is made externally using the OSU Atomizer, which creates a "fog" of sub-micron Diesel fuel droplets (see Figure 4) Fuel is injected into the intake manifold at a single location. It is well known that reduced compression ratio (via engine geometry or cam timing) has a positive impact on HCCI combustion, by delaying the start of combustion; this results in improved ISFC and maximum BMEP The current work focuses on what is essentially a retrofit of a stock CIDI engine
The work presented here is the early result of developing a control-oriented approach to HCCI combustion control.	then feed the initial conditions for the combustion model.	Intake Air

