Fabrication of Small-Orifice Fuel Injectors

J. B. Woodford and G. R. Fenske
Argonne National Laboratory
Presented at DEER 2005
August 23, 2005
Acknowledgments

- Bert Hobein
- Jamie Griffith
- Brad Kaspar
- Brad Duling
- Dave Herman
- LaNiece Thomas
- Robert Straub
- Dan Engelbert
Outline

• Introduction & Background
 - The Need
 - A Path
 - The Concept
 - The Method

• Implementation

• Application

• Conclusions & Further Work
The Need

• Decrease emissions
 - 2007 EPA emissions guidelines for diesel engines are quite stringent
 - Further emission reduction mandates are likely
 - Diesel engines are more efficient than SI engines
 - Keeping diesel-powered vehicles on the road thus saves energy

• Increase fuel efficiency
 - Unburned fuel and incomplete combustion reduces engine efficiency
 - Improving combustion process will increase efficiency
A Path

- Many different strategies for reducing emissions are being tried
 - Aftertreatment devices
 - Changes in engine cycle
 - Changes in injector design
- EPA: PM emissions from an LD engine reduced by using 75 µm orifice injectors
- SNL: PM eliminated in bench tests by reducing injector orifice diameter to 50 µm

Problems with Small Orifices

• Decreased fuel delivery
 - Compensate by increasing injection pressure, number of spray holes, and/or discharge coefficient

• Sensitivity to plugging
 - Coking potentially a major issue, especially with alternative fuels such as biodiesel

• These must be considered
The Concept

• Economically fabricating 50 µm-orifice injectors on a commercial scale is currently impossible
 - Limit for economical EDM fabrication is 100 µm
 - Other technologies (laser drilling, LIGA, etc.) too difficult to scale up

• Solution: Reduce orifice diameter by coating the ID of a current-technology injector
 - Wide array of techniques for depositing material
 - Select an appropriate one
The Method

- After careful examination of the available techniques, we chose Electroless Nickel (EN) plating
 - Mature technology, inexpensive, widely commercialized
 - Highly conformal coatings of internal surfaces
 - Potential for depositing different alloys to tailor:
 - Mechanical properties: Erosion resistance
 - Chemical properties: Corrosion/Coking resistance
Potential Issues

- Hole size—is diameter reduction to 50 µm possible using EN plating?
- Uniformity—does the coating process change the circularity of the holes and/or the needle guide?
- Adhesion—will the coating come off in use?
- Durability—is the coating capable of resisting the impact loads in the needle seat and the possibility of cavitation erosion in the orifices?
- Surface finish—is the coating smooth enough in the as-deposited state, or will further processing be necessary?
Results: Hole Size & Uniformity

- We have reduced orifice diameter to 50 µm in bench-scale tests, and to 75-80 µm in commercial-scale tests.

- Circularity and uniformity also appear to be satisfactory.
Results: Hole Size & Uniformity (cont’d)

- Scatter in the diameter is due to a surface finish issue, since resolved
Results: Adhesion

- Initially we had problems with adhesion in our bench-scale coatings.
- Adhesion on the commercial-scale coatings is excellent, as shown by Rockwell indent tests.
Results: Durability

- In bench-scale tests, coating hardness ranged from HK$_{50}$ 400 to 800, depending on phosphorus level, vs. substrate hardness of ~700.
- Softer coatings generally have higher strain-to-failure.
- We can thus tailor the coating to give optimal durability in use.
- Impact tests for the needle seat are planned.
Results: Surface Finish

- Initial surface finish in as-received spray holes is R_A ca. 0.5 µm
- In bench-scale tests, the best final spray hole R_A was ca. 0.2 µm
- In bench-scale plating tests on flats with different R_A values, the post-plating R_A was always lower than the initial R_A

- Orifice interior micrographs before (L) and after (R) 15 min EN plating; image size 100 µm across
Results: Surface Finish (cont’d)

Surface Roughness

- Smoother surfaces should lead to higher discharge coefficients
Results: Surface Finish (cont’d)

- Initially there were problems with the commercial-scale coatings, caused by accumulation of hydrogen bubbles on the surface.

- These were solved in the most recent set of coatings.
Results: Combustion Deposit Resistance

- In bench tests, the commercial EN plating bath appears to be less prone to deposit formation than steel.
Results: Combustion Deposit Resistance (cont’d)

- PSMO tests are also encouraging
Results: Combustion Deposit Resistance (cont’d)

- Further bench tests at 250°C with high-oleic sunflower oil show even greater differences between steel and EN

High-Oleic Base Oil Deposit and Volatiles Mass% in Open Air at 250°C
Conclusions & Future Work

• Economical fabrication of fuel injector nozzles with orifice sizes 50-75 µm via EN plating has been demonstrated

• Further work is in progress or planned:
 - Spray visualization and LD engine testing
 - Impact resistance tests on coated needle seats
 - Spray tests with alternative fuels