Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use Engine Efficiency

Nigel N. Clark¹ (presenter), Francisco Posada¹,

John M. Pratapas², Barbara Goodrich², Aleksandr Kozlov² and Mark Khinkis²

Center for Alternative Fuels, Engines & Emissions (CAFEE)¹ Department of Mechanical and Aerospace Engineering West Virginia University Morgantown, W.V

> Gas Technology Institute (GTI)² Chicago, II

Funding: U.S Department of Energy, grant DE-FC26-05NT42632

Poster location: P-31

Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-use Engine Efficiency

- LTC/HCCI show promise for low NOx emissions, but power density is low and control is difficult.
- Using Thermo-chemical recuperation, part of the fuel stream will be reformed using exhaust heat.
- The reformed, hydrogen-rich stream and the original fuel stream will both be used to aid in control.
- System and reaction modeling favor steam for reforming.
- Modeling will assess the use of high displacement, low imep options.
- With LTC/HCCI and reduced cooling burden, 10% fuel economy gain is targeted.
- Project is mid-Phase 1, with a total of three phases.
- Experimental research and control optimization are in phases 2 and 3.

