

Distributing Urea for the On-Road Vehicle Market

Presented at

DEER 2006 August 20-24, 2006 Detroit, Michigan Michael D. Jackson Raymond Schubert Jenny Pont

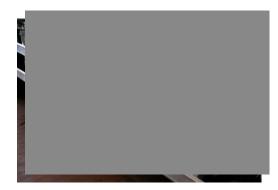
TIAX LLC 1601 S. De Anza Boulevard Cupertino, CA 95014-5363

Tel. 408-517-1560 www.TIAXLLC.com

jackson.michael@tiaxllc.com

Will an Urea Infrastructure Developed if Engine Manufacturers Chose SCR for 2010 NOx Control?

- What vehicle applications will use SCR Urea?
- How much urea will be required for these applications?
 - NOx reduction needed
- How will urea be manufactured and supplied for the on-road market?
 - Urea specification
 - Aqueous urea: 32.5 % (vol) with deionized water
 - Trucked to large station users
 - Packaged/bottle and shipped to retail outlets
 - Totes
 - Barrels
 - Bottles
- What's the cost and possible business case for manufacturing and distributing urea?

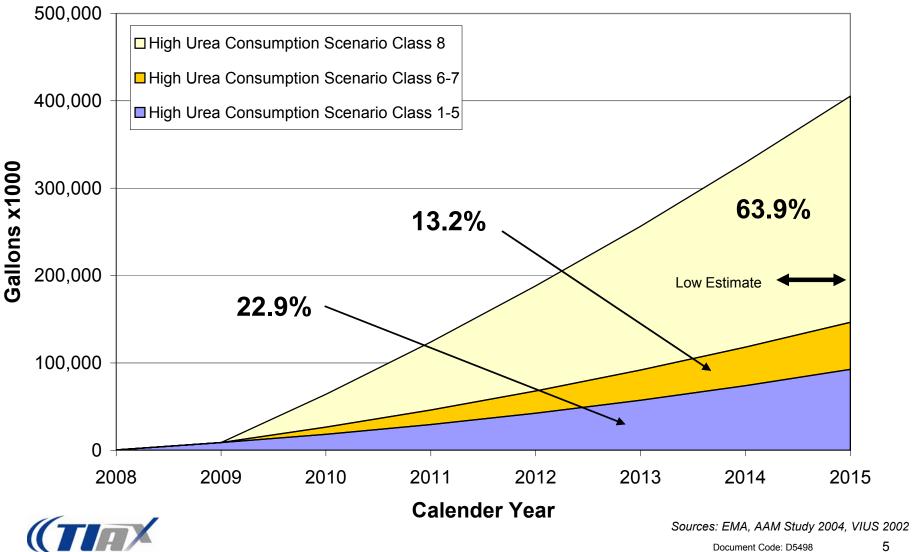


Several Light- and Heavy-Duty Engine/Vehicle Manufacturers Have Selected SCR as Their NOx Control Strategy

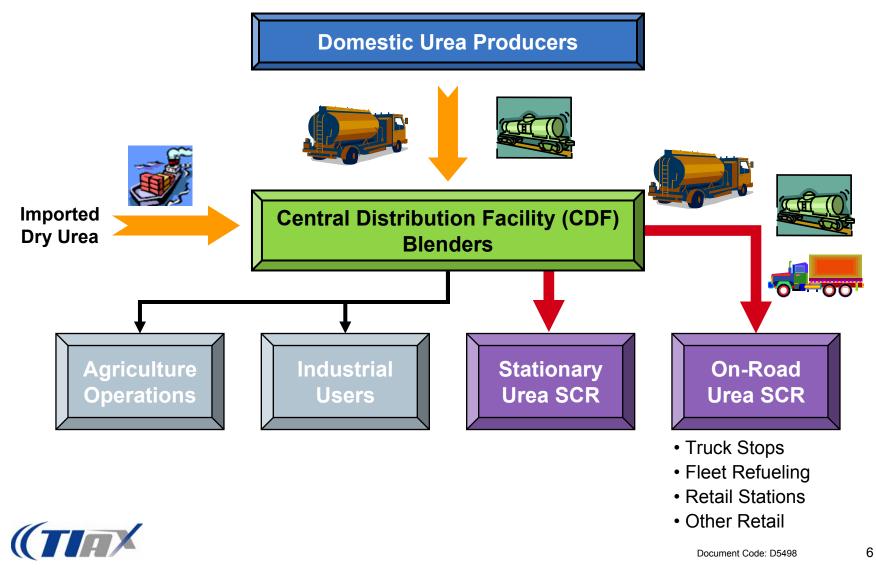
- On road SCR systems will use aqueous urea on road specification at 32.5% mixed with deionized water
- For light-duty vehicles to meet Tier 2, Bin 5 NOx standards urea will require 2% aqueous urea (urea volume to diesel volume)
- For heavy-duty vehicles to reduce engine out NOx emissions from 1.2 g/bhp-hr to 0.2 g/bhphr will require 1% aqueous urea
- On-board urea storage depends on vehicle packaging, weight, and range considerations

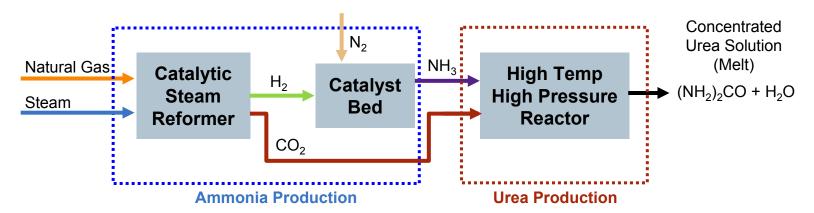
SCR Catalyst

Urea dosing Unit and Integrated Urea/Diesel Tank



Sources: NREL Study 2002 Document Code: D5498 3 Urea consumption = (sales estimate x VMT x urea consumption %) / FE


- Consumption estimates were calculated for each vehicle class: LDV (1-5) and HDV (6,7) and HHDV (8)
- VIUS 2002 data was segmented in order to provide a reasonable outlook
 - All diesel vehicles on the road are used to determine annual VMT
 - Trucks that were less than 1 year old were used to determine fuel economy
- Sales estimates obtained from
 - Alliance of Auto Manufactures and EMA for LDVs (13.4% to 4.4%)
 - EMA for HDVs (consistent with Wards Sales data)
- Urea Consumption varying sales estimates and urea consumption used to provide range of estimates
 - Low range: 4.4% LDD sales (with 2% urea) and 1% urea in HDVs
 - High range: 13.4% AAM LDD sales and 2% urea in HDVs



Urea Consumption Estimates

Domestic and Imported Urea is Shipped to a Central Distribution Facility, Blended and Transported to the Retailer

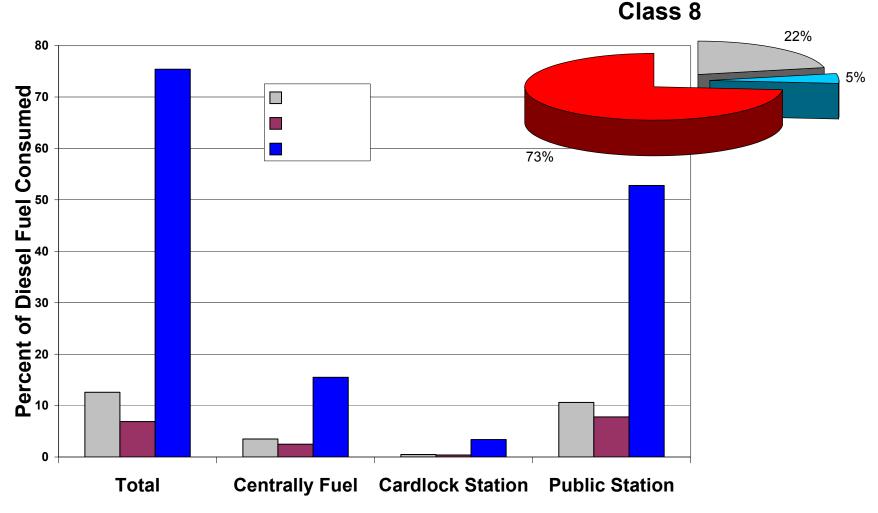
Urea Manufacturing and Specification

Urea Classifications			
Agency Listing	Hazardous	Carcinogenic	
EPA	No	No	
OSHA	Yes ²	No	
DOT	No		
Federal Hazardous	No		
Waste Regulations ¹			

1. 40 CFR 261

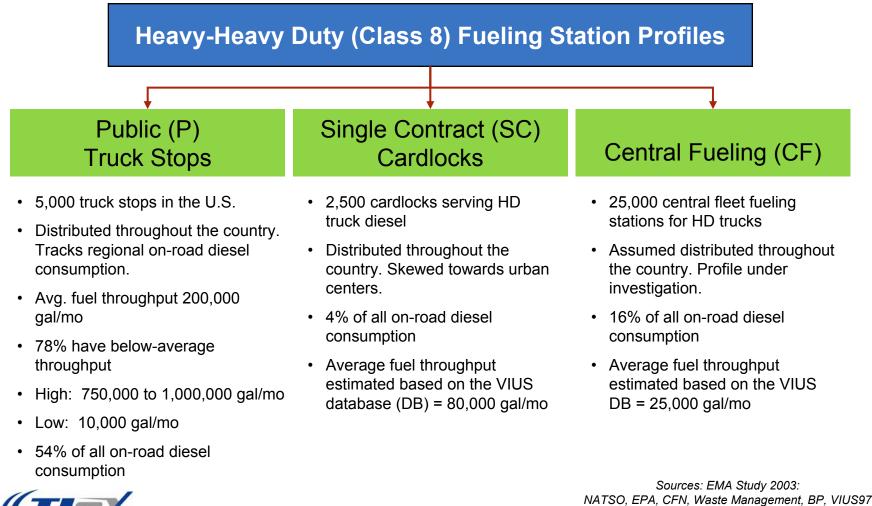
2. Some of the MSDS' surveyed indicate that urea is not hazardous under OSHA Hazard Communication Standard 22CFR 1910.1000

SCR Urea DIN 70070 as of 2005							
Unit Min Max							
Urea Concentration	wt%	31.8	33.2				
Density at 20°C	kg/cm3	1087	1093				
Refractive Index at 20°C		1.3814	1.3843				
Alkalinity as NH3	wt%		0.2				
Biuret	wt%		0.3				
Aldehyde	mg/kg		5				
Insolubles	mg/kg		20				
Phosphate	mg/kg		0.5				
Calcium	mg/kg		0.5				
Iron	mg/kg		0.5				
Copper	mg/kg		0.2				
Zinc	mg/kg		0.2				
Chromium	mg/kg		0.2				
Nickel	mg/kg		0.2				
Aluminum	mg/kg		0.5				
Magnesium	mg/kg		0.5				
Sodium	mg/kg		0.5				
Potassium	mg/kg		0.5				

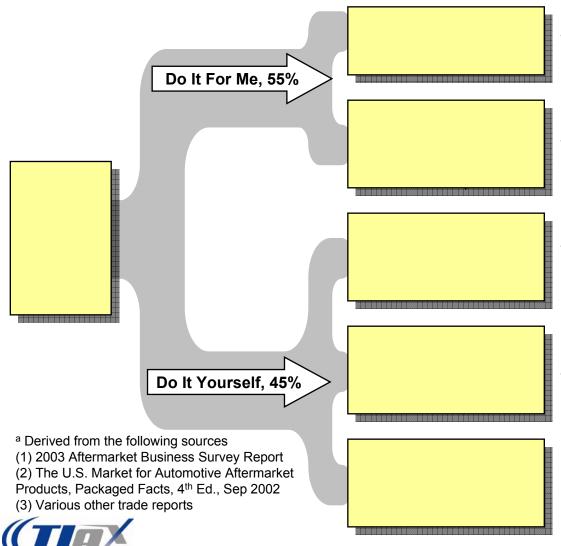

Sources: NREL Study 2002

Urea Gallons Needed Between Maintenance or Fueling Intervals for Various Vehicle Classes

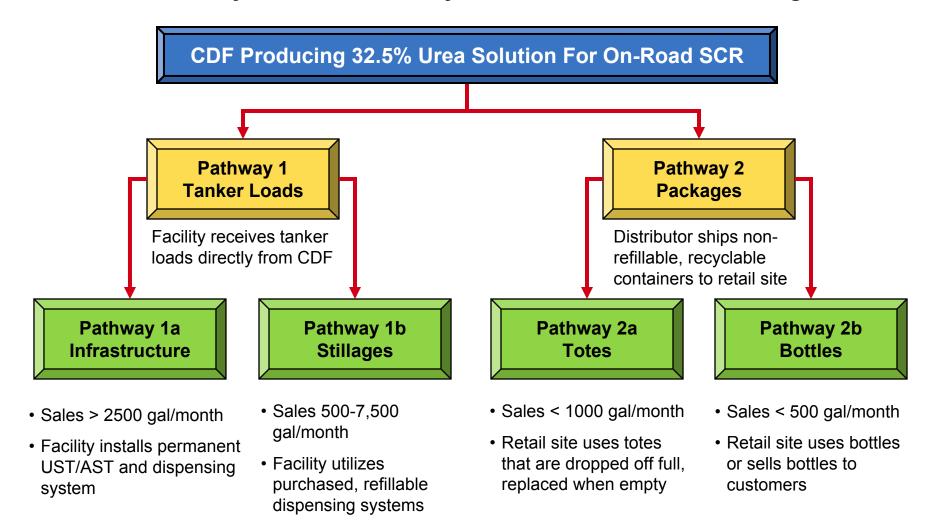
	Urea Tank Range Analysis			
	Light-duty Car; Class Light heavy-duty 1 Truck; Class 6-7		Heavy heavy-duty Truck; Class 8	
	< 10,000 lb	19,501 - 33,000 lb	> 33,000 lb	
Fuel Economy, mpg	29.60	8.45	6.51	
Average Miles/Yr	12,227	12,974	41,500	
Urea Consumption %	2.0%	1.0%	1.0%	
Urea Tank Size (gal)	7.5	20	20	
Urea Tank Range (mi)	11,100	16,901	13,025	
Diesel Tank Size (gal)	13	100	300	
Diesel Tank Range (mi)	385	845	1,954	
Diesel Fills/Urea Fills	28.85	20.00	6.67	
Long Maint. Interval (mi)	7,500	15,000	25,000	
Miles Short for Maint.(mi)	0	0	11,975	
Urea Gallons Needed between Maintenance Intervals (gal)	0.00	0.00	18.39	



Characteristics of Private and Commercial Truck Fueling



Heavy Duty Truck Fueling Occurs at Truck Stops, Cardlocks, and Central or Fleet Fueling


Urea Distribution for Light Duty Diesel Vehicles Will Follow the Existing Automotive Maintenance Market

- On average, the existing automotive maintenance market share is also applicable to motor oil change
- It can be expected that any new automotive aftermarket functional fluid will exhibit similar retail characteristics on maturity
- SCR-urea is likely to have a price point that is similar to that of key automotive functional fluids such as motor oil, coolant, brake fluid, etc.
- Further, depending on the ease and frequency of urea refill, the urea market share will also
 "naturally" mature to resemble the market shown in the figure on the left

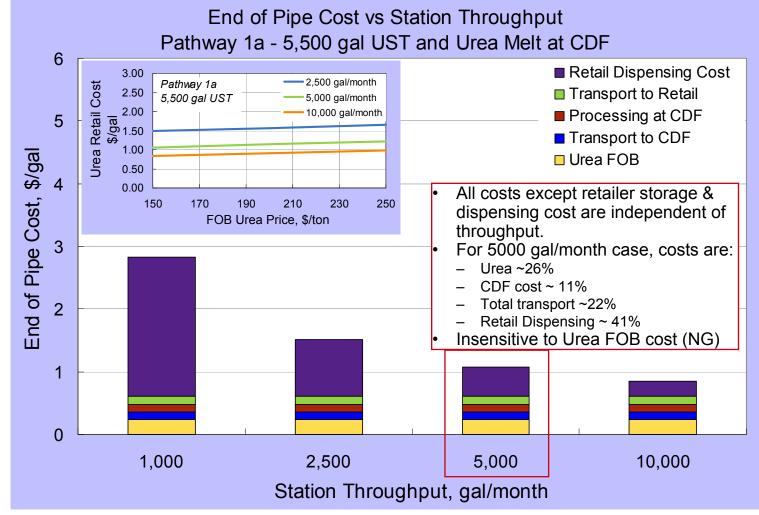
Sources: AAM Study 2004

Two Main Pathways for Urea Delivery are Tanker Loads and Packages

The European SCR-Urea Market is Currently Selling AdBlue, a 32.5% weight by Volume Aqueous Urea Solution, in a Variety of Volumes

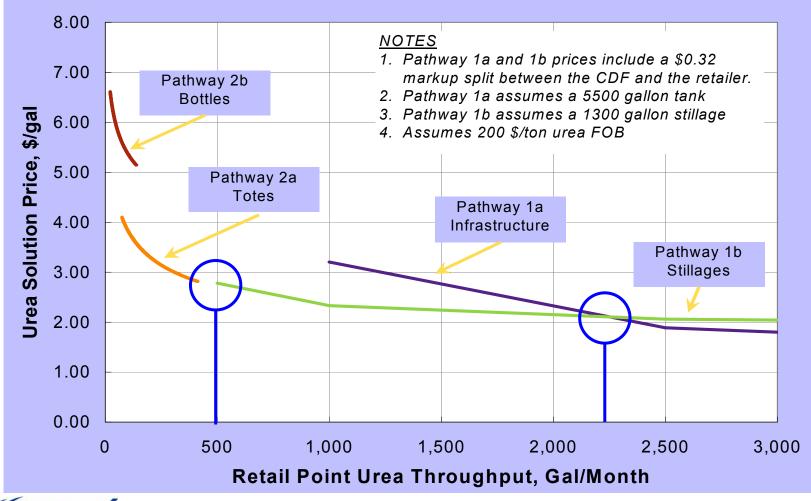
Stillages ^a	Totesa	Bottles ^a	
AdBlue Retail Containers	Container Volume	Price of AdBlue (\$/gal) ^c	
Stillages⁵	15,000-L (3,963-gal) 3,000-L (793-gal)	2.12 2.52	
Totes	1,000-L (264-gal)	2.78	
Bottles	18-L (4.8-gal) 10-L (2.6-gal) 5-L (1.3-gal)	4.30 4.63 5.30	

^a Pictures of Air1 are shown as an example and do not imply an endorsement of the product


^b Stillages are covered under Pathway 1 in this analysis

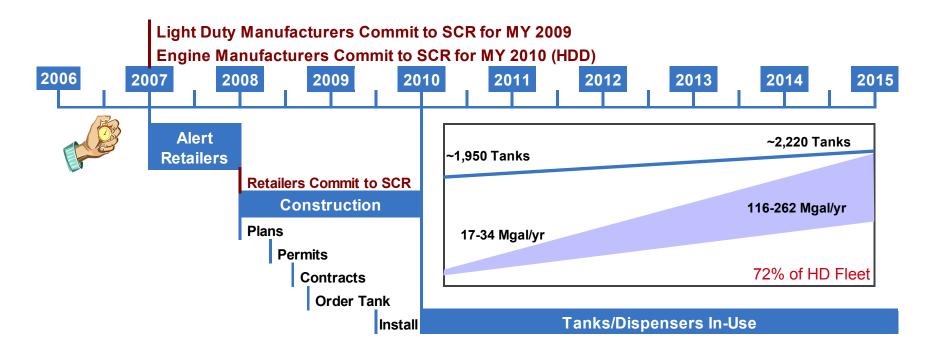
^c Prices are shown without applicable taxes.

Sources: AAM Study 2004


Retailer Costs Dominate Urea Costs for Underground Tanks Selling Less Than 10,000 gal/month*

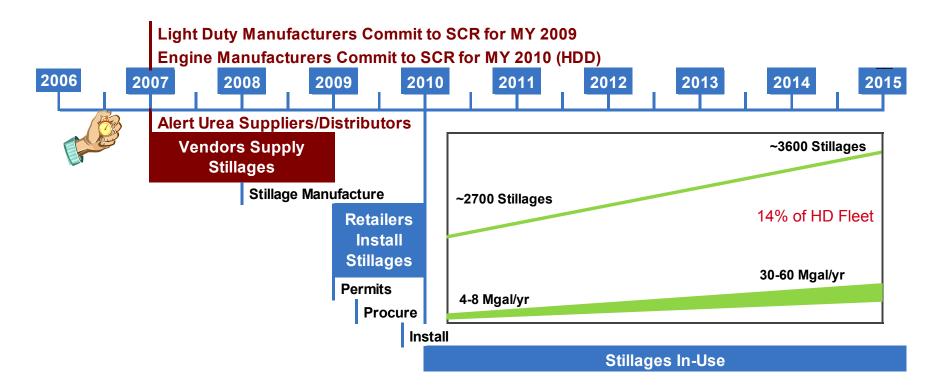
* For 2010-2015, TIAX projects all stations will be less than 10,000 gal/month.

Projected Urea Prices for Various Retail Distribution Strategies

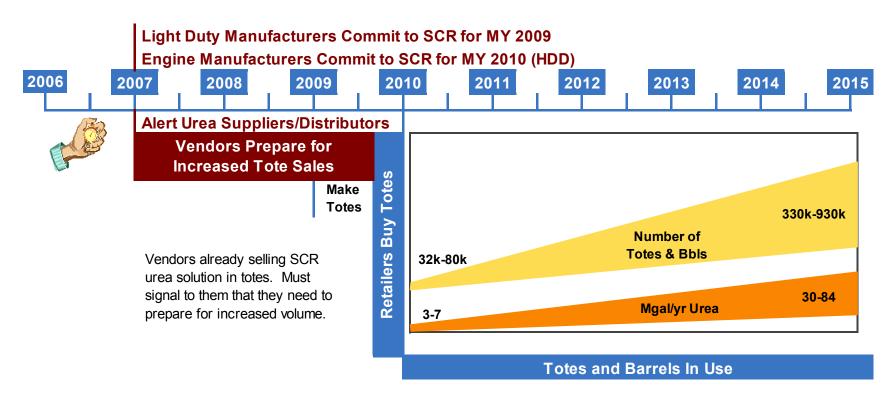


Methodology for Estimating Urea Infrastructure

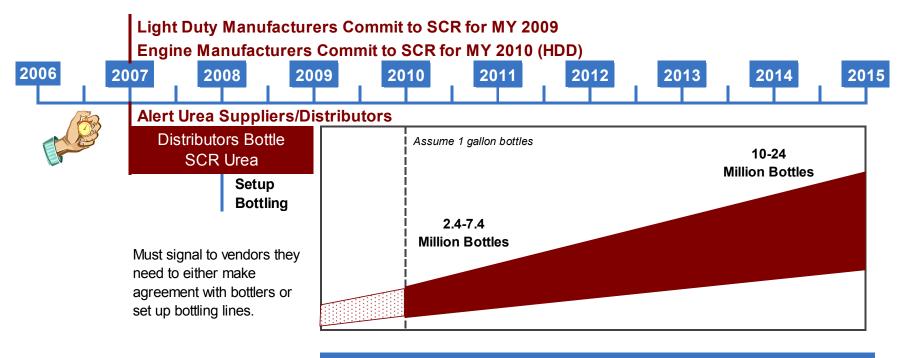
- For pathway 1 segmented diesel fueling into station sizes and then assigned urea volume
 - Station size, number of stations, and percentage of diesel throughput
 - For each station size determined urea throughput based on percentage of diesel throughput
 - Determine type and number of urea dispensing systems needed to meet urea demand
 - Type based on infrastructure costs (function of urea throughput)
 - Above ground or underground tank systems for large throughputs, stillages for medium, and totes for small throughputs
- For pathway 2 assigned remaining urea demand among a widely distributed supply system that provides coverage within 20 miles to a high percent of U.S. population
 - Dealers, service stations, fueling stations, auto parts stores, and mass merchants (~30,000 sites throughout the U.S.)
 - Barrels and totes, and bottles


Need 2 Years to Install 1,950 Tank-Dispenser Systems (Pathway 1A). Construction Should Begin Jan 2008

5,500 gal UST throughput range: 500 to 10,000 gal/month


Need 1 Year for Retailers to Site and Install 2,700 Stillages by 2010 (Pathway 1B)

1,300 gal Stillage throughput range: 100 to 2,000 gal/month


For Pathway 2A, Vendors Already Sell Urea in Totes for Stationary SCR Use but Will Need Significant Jump in Volume by 2010

264 gal totes or barrels throughput range: 60 to 240 gal/month Services both HD and LD Market

Vendors will need to set up bottling production to handle projected bottled urea demand

Bottles In-Use

Distributing 1 gallon bottles in 2010 to ~30,000 retail sites

Dealers	21%
Service Stations	19%
Fueling Stations	8%
Auto Parts Stores	1%
Mass Merchants	1%

Operating Costs for Urea are Lower than Fuel Penalty Costs of Other Alternatives for 2010 NOx Compliance

- Range of urea consumption identified to be between 1 and 2%
- Urea price for Classes 1-5 average of Pathway 2 prices, Pathway 1 average for Classes 6-8
- Diesel cost per gallon range uses EIA AEO2006 projected diesel price for the low, today's diesel price for the high
- 5% Fuel Economy Penalty is compared to urea costs
- All prices and costs shown in 2006 \$

	Light Duty Class 1-2		Heavy Duty Class 8			
	Local	Medium	Long	Local	Medium	Long
	<200 miles	200-500 miles	>500 miles	<200 miles	200-500 miles	>500 miles
Fuel Economy (mpg)	17.6 6.5					
VMT (mi/yr)	13,100	25,000	50,000	15,000	50,000	125,000
Urea Consumption	1% to 2%					
Urea Price (\$/gal)		4.97			1.99	
Diesel Price (\$/gal)			\$1.82	2 to \$2.94		
5% FE Penalty (\$/yr)	\$68 - \$109	\$129 - \$208	\$258 - \$417	\$210 - \$339	\$699 - \$1,129	\$1,747 - \$2,821
Urea Costs (\$/yr)	\$37 - \$74	\$ <mark>7</mark> 0 - \$141	\$141 - \$282	\$46 - \$92	\$153 - \$306	\$382 - \$764

Full Range of Urea Infrastructure from Underground Tanks to Bottles can Develop in Time to Meet the Needs of Light- and Heavy-Duty Diesel Vehicles Using SCR

- Clear signal from vehicle manufacturers is needed by 2007
 - Urea manufacturers
 - Urea distributors (CDFs)--some construction lead time
 - Urea Retailers--permitting and construction lead times
 - Equipment and system manufacturers—manufacturing lead times
- European experience will help U.S. infrastructure development
 - Vendors with product already developed for stillages, totes, and bottles
 - U.S. numbers not overwhelming according suppliers of dispensing equipment
- Margins make a reasonable business case based on "averages", but detail planning will be required to achieve these margins
 - Need to meet urea demand but not strand infrastructure investment
 - Easiest for large volume stations harder for small volume stations

Thank You For Your Attention

TIAX Final Report Available on Engine Manufacturers Association (EMA) Web Site:

http://www.enginemanufacturers.org/admin/content/upload/186.pdf

Contacts: Raymond Schubert Michael D. Jackson

schubert.raymond@tiaxllc.com jackson.michael@tiaxllc.com

