#### Improved Lifetime Pressure Drop Management For DuraTrap<sup>®</sup> RC Filters With Asymmetric Cell Technology (ACT)



#### Krishna Aravelli, Josh Jamison, Kim Robbins, Natarajan Gunasekaran, Achim Heibel

#### 24 August 2006



Diesel Technology Development Science and Technology, Corning Inc.



#### **Overview**

- Introduction & Objectives
- Materials & Testing Methodology
- Results & Discussion
  - Engine Testing
  - Post Test Analysis
- Conclusions



#### Tightening of future emission legislation - After treatment & advancements in engine technology



US legislation (on-road HDD) requires PM reduction to 10% of its current levels by 2007

#### **Diesel Emissions Control Systems**



#### Diesel Particulate Filters needed for low PM emissions - Wall-flow monolith filters as primary choice of industry

- Honeycomb substrate with checkerboard plugging
- PM trapped on/inside walls
- Periodic regeneration of combustible fraction of the PM



### Ash accumulation in DPF

#### - Non-combustible fraction of PM accumulates in the filter

#### • Typical Ash components are

- Sulfates, phosphates, oxides of calcium, zinc, magnesium etc
  - formed by combustion of lubricating oil additives like detergents, acid neutralizers, anti-wear agents, corrosion inhibitors ...
- Metal oxides (Fe, Cu, Cr, Al) from wear
  - From the engine or the exhaust system
- Ash accumulation & composition varies significantly, depending upon
  - engine type and runtime
  - Operating conditions,
  - type of fuel & additives,
  - lubricating oil & additives
  - metallurgy of the exhaust system components

# Ash implication on performance & mitigation

- Accumulated ash increases the flow resistance through the filter
  - Increased back pressure
    - Higher fuel consumption
    - Lower power output & dynamic response
    - Lower heat rejection (exhaust)
- Reduction of effective filter volume
  - Lower soot capacity
    - Higher regeneration frequency
- Mitigation
  - Filter design
    - Filter geometry
    - Channel geometry
  - Periodic Ash cleaning

# Asymmetric Cell Technology

- Channel design for improved ash storage capacity
  - Larger inlet channel volume
  - Equal bulk density → similar regeneration performance
  - Similar physical properties
  - Equal mechanical and thermo-mechanical durability performance compared to Standard, due to proprietary design
  - Potential to use a smaller filter volume

# Service interval for DPFs

- Impact of DPF design aspects



Deer Conference 2006

### **Objectives**

Characterize Pressure drop with ash accumulation for DuraTrap® RC (on-engine)

Demonstrate performance benefit of ACT

Evaluate the impact of long term engine exposure on material stability/durability

#### **Materials**

- DPFs evaluated in current study

#### – DuraTrap® RC

- Uncatalyzed
- Filter Volume :17 Liters
- Filter dimensions Ø10.5"x12"

#### – DuraTrap® RC ACT\*

- Uncatalyzed
- Filter Volume :17 Liters
- Filter dimensions Ø10.5"x12"

• 
$$d_{h,inlet} / d_{h,outlet} = 1.3$$

| Design/Geometry  | Cell Density<br>[CPSI] | Web<br>Thickness<br>[mils] | Inlet OFA [%] | Cell Diameter<br>[in.] |                   |
|------------------|------------------------|----------------------------|---------------|------------------------|-------------------|
|                  |                        |                            |               | INLET<br>CHANNEL       | OUTLET<br>CHANNEL |
| DuraTrap®RC      | 200                    | 19                         | 27            | 0.053                  | 0.053             |
| DuraTrap®RC ACT* | 270                    | 16                         | 34            | 0.051                  | 0.038             |

### **Test Cells specifications**

#### Ash Loading Test Cell:

- Cummins N14
  - 6 cylinder-Inline
  - Rated Power :460 HP @ 1800RPM
  - Torque at rated : 1300lb-ft.
- Mid-west Eddy-current Wet-gap dynamometer
- UEGO Sensors



#### **Characterization Test Cell:**

- Volvo D12 (MY2003)
  - 6 Cylinder-Inline
  - Rated Power :460 HP @ 1800RPM
  - Torque at rated : 1300lb-ft.
- Mid-west Eddy-Current Wet-Gap dynamometer
- UHEGO Sensors
- Emissions-Raw (CO, CO2, NO/NOx, O2,THC)



#### System lay-out for DPF evaluation



Deer Conference 2006

### Ash accumulation cycle

- accelerated by load profile and low DPF volume/engine power output

- high load factor ~0.74; >70% of accumulation time in Mode 3



Deer Conference 2006

#### Pressure drop development with ash accumulation

- Initial pressure drop increase moderate
- More pronounced pressure drop impact with higher cycle number



### Ash accumulation vs. Oil Consumption

- Ash accumulation tracks well with oil consumption

- Ash finding rate in the DPF about 55-60%



#### Reason for lower ash finding rate



Deer Conference 2006

### **Pressure Drop:** Fundamental Influences



| Contribution |                                                               | Key Parameter                                                                       | Filter characteristics     |  |
|--------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------|--|
| 1            | Inlet losses (Contraction)                                    | Mainly OFA                                                                          | Geometry                   |  |
| 2            | Frictional losses along the inlet channel walls               | Mainly hydraulic diameter of channel, length                                        | Geometry                   |  |
| 3            | Frictional losses from flow through wall and soot & ash layer | Permeability of wall (also fraction of soot & ash), wall thickness, filtration area | Wall properties & geometry |  |
| 4            | Frcitional losses along the outlet channel wall               | Mainly hydraulic diameter of channel, length                                        | Geometry                   |  |
| 5            | Outlet losses (Expansion)                                     | Mainly OFA                                                                          | Geometry                   |  |

#### Pressure drop effects

- Geometric and micro-structural impact



#### Pressure Drop as a function of Flow

- Increasing advantage of ACT design at all operating flows with increasing ash & soot in the filter



### Δp increase with ash loading

- Higher pressure drop for ACT in the clean state

- Roughly 30% increase in the ash capacity with ACT design



## Detailed view of the bottom

- Low density ash/voids present in between ash plugs
- Lower concentration of high density ash in near skin channels



### Ash distribution evaluation after dissection

- Large low density ash plug near the outlet of the filter

- High density ash layer on the wall (increasing from in- to outlet)



Deer Conference 2006

#### Chemical Analysis of ash in the filter - Similar ash composition over the length of the filter



Deer Conference 2006

## **Time Temperature distribution**

-1720 on engine hrs. [DuraTrap® RC] >> equivalent to number of regenerations for ~300k miles - 2640 on engine hrs. [ACT] >> equivalent to number of regenerations for ~420k miles



# Post- testing physical Integrity - Both filters showed no integrity degradation



#### Shown: DuraTrap® RC ACT







# Smoke Number - DuraTrap® RC ACT filter

- excellent filtration performance over ash accumulation
- filtration improves with ash accumulation

27



# **Summary & Conclusion**

- On-engine ash accumulation testing of DuraTrap<sup>®</sup> RC
  - Highest oil consumptions at high speed & load
  - Lube oil consumption linearly correlated to ash acc. in DPF
  - Lifetime  $\Delta p$  for DPF includes three phases:
    - Conditioning, filter volume reduction, inlet channel throttling
- Successful demonstration (on-engine) durability of DuraTrap<sup>®</sup> RC filters
  - Std: 1720 engine hours [regen. equivalent of ~300Kmiles]
  - ACT: 2640 engine hours [regen. equivalent of ~420Kmiles]
- 30% ash storage advantage of DuraTrap<sup>®</sup> RC 270/16 ACT compared to standard design

#### References

- Young D M, et. Al., "Ash Storage Concept for Diesel Particulate" SAE 2004-01-0948
- Merkel G A, et al., "*Thermal durability of wall-flow ceramic diesel particulate filters*" SAE 2001-01-0190
- Diesel Technology Forum website <u>http://www.dieselforum.org</u>
- EPA website <u>http://www.epa.gov</u>



#### - Krishna Aravelli



