

Ammonia storage and delivery systems for NOx aftertreatment

<u>Tue Johannessen</u>, Henning Schmidt, Jakob Svagin and Jan Oechsle Amminex A/S

Poster location: P-21

Key issue: Reductant storage for SCR

Ammonia is the active molecule
Urea is currently considered as "fuel" for SCR
But urea presents many challenges for LD/PC

- Low capacity
- "Issues" in both cold and warm climate
- Conversion and mixing in exhaust line (deposits?)
- Limitation on dosing at low load / urban driving

Ammonia stored safely in AdAmmine™:

- $Mg(NH_3)_6Cl_2$ (>50 wt% NH_3 ; > 600g NH_3 /liter)
- No degradation; long shelve life
- 300% higher capacity than urea (AdBlue)
- Safe storage enables direct ammonia dosing for SCR

100g material sample

Release by controlled thermal desorption of NH₃ from cartridges:

- AdAmmine cartridge with heater, P-sensor, thermocouple
- Dynamic dosing from 3.5kg prototype demonstrated

System design and performance:

- Ammonia Storage and Delivery Systems ASDS
- Power demand for US06/FTP75 < 60W
- Peak flows above 10 SLPM

Electronics and control:

- Algorithms for power minimization
- OBD functions