Diesel Fuel : Use, Manufacturing, Supply and Distribution

Jim Williams American Petroleum Institute

Presentation at 2007 Diesel Engine Efficiency & Emissions Research Conference August 15, 2007

Diesel Fuel: Use, Manufacturing, Supply and Distribution

- Key Considerations
- Diesel Fuel Manufacturing and Supply
 >US vs Europe
 >Diesel production technologies
- Diesel Fuel Markets
- Vehicle Issues
 Light Duty Diesel (LDD) vehicle markets
- Summary/Conclusions

Diesel Fuel: Use, Manufacturing, Supply and Distribution

- **Key Considerations**
- <u>US refineries</u> are designed to maximize gasoline production
 - > To respond to consumer demand
 - US diesel demand is driven by heavy-duty applications
- <u>European refineries</u> are designed to maximize diesel production
 - Diesel as the primary transportation fuel
 - Heavily influenced by tax incentives for diesel
 - Europe now importing diesel and exporting gasoline

Diesel Fuel: Use, Manufacturing, Supply and Distribution

Key Considerations (Continued)

- Refinery design and equipment differences
 - Between refineries designed for <u>maximum gasoline</u> production versus those designed for <u>maximum diesel</u> production
- A major switch to diesel production in the US would require significant refinery re-design
- There are many options other than increased LDDs for improving fuel economy

Refinery "Cut of the Barrel": US vs Europe vs Japan

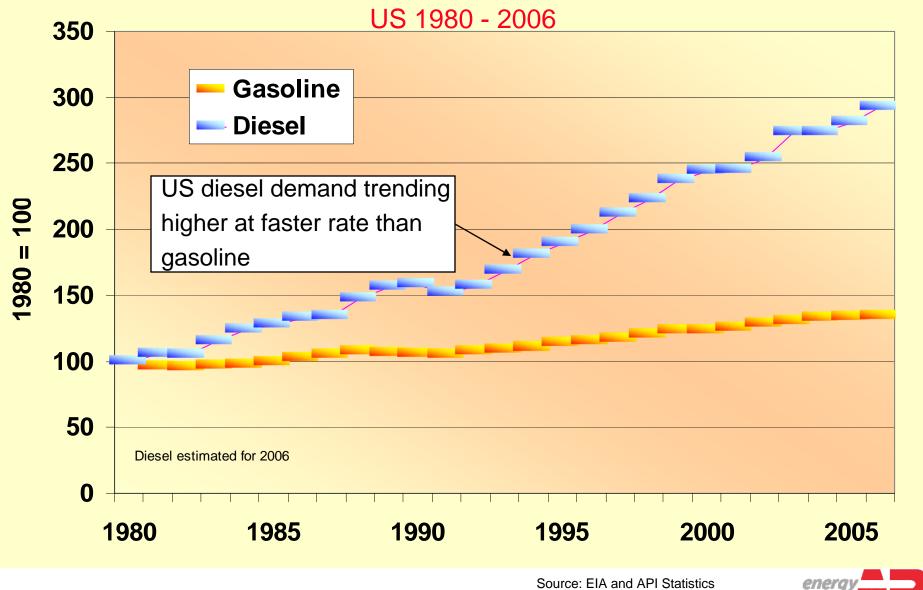
US Refineries Are Designed and Constructed for Gasoline Production

Gasoline (~47%)	Gasoline	Gasoline
	Kero/Jet Diesel/Distillate	Kero/Jet
Kero/Jet	Diocon Diotinato	Diesel/Distillate
Diesel/Distillate	Other	Other
Other		
US	Europe	Japan

Fuel Manufacturing and Supply: US vs Europe

- Refinery design and equipment differences
 - Between refineries designed for <u>maximum gasoline</u> vs those designed for <u>maximum diesel</u>
 - ➢ Gasoline: Catalytic cracking → Volume & Octane
 - ✓ 37% of US crude capacity
 - ✓ 15% of Europe's crude capacity
 - ➢ <u>Diesel</u>: Hydrocracking→ Volume & Cetane
 ✓ Increased by approx. 60% between 1995 and 2005
- A major switch to diesel production in the US would:
 - Require significant refinery re-design and major process unit installations
 - Cost \$500 million to \$1 billion at many refineries
 - Require substantial lead time, e.g., 5 10 years

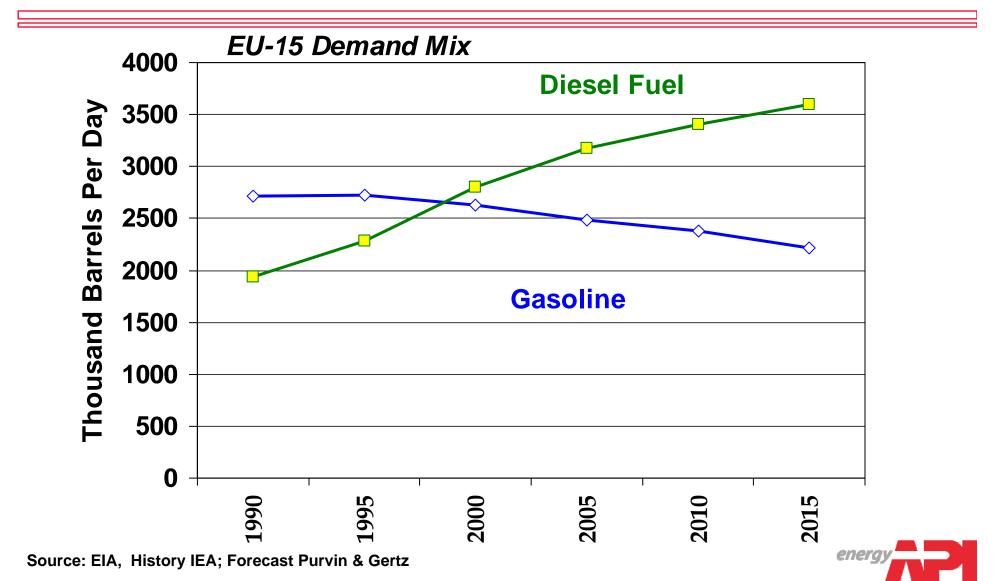
Diesel Fuel Markets


Several Factors Have Caused a Tightening of Worldwide Diesel Supply

- Diesel demand in Europe has grown as diesel vehicles replaced gasoline vehicles.
 - Different tax treatment
 - Less severe vehicle emissions standards
 - Improved diesel vehicle performance
- Diesel demand has also been growing worldwide
 > Heavy duty diesel demand grows as the economy grows
- US highway diesel demand has been growing at a faster rate than gasoline demand

Demand Trends: Gasoline Versus Highway Diesel

Ē

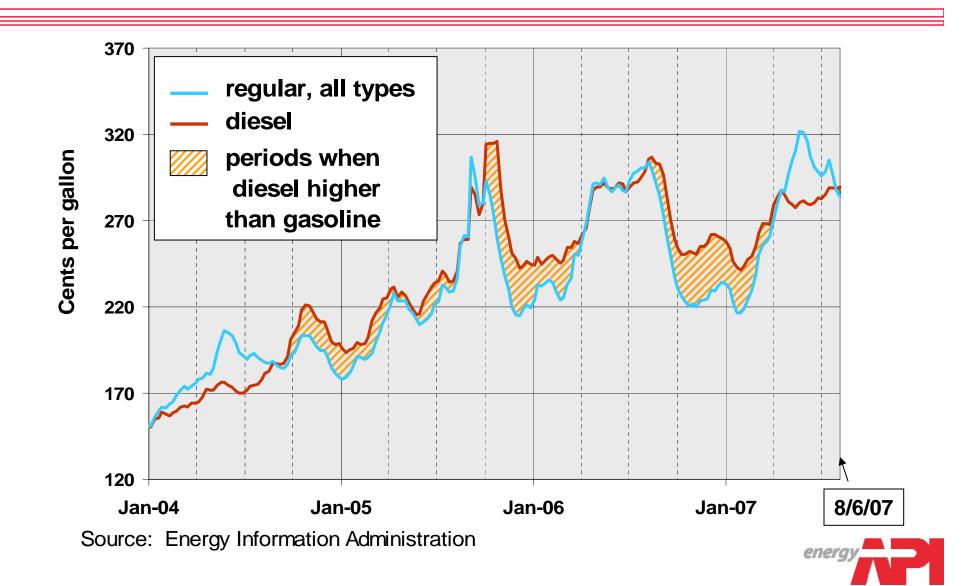


3

As Diesel Demand Grew in Europe, Gasoline **Became Surplus and Was Exported, Much to US** Production versus Demand of Motor Gasoline and Diesel in Europe and the US (million barrels per day) **United States** Europe 10 9 6 **Gasoline Demand Diesel Demand** 8 Imports **Diesel Production** Imports 5 Gasoline Production 6 4 **Gasoline Production** 5 3 4 Gasoline Demand Exports **Diesel Demand** 3 2 Imports **Diesel Prodúction** 2 1 0 0 2000 90 90 95 2000 005 S 005 တ ဂ S တ ດ \sim - \sim enera Source: IEA, EIA

Assumed constant stocks

EU-15 Demand Mix Forecast Shows Continued Declining Gasoline Demand Which Benefits US


Challenges to US Light Duty Diesel Growth

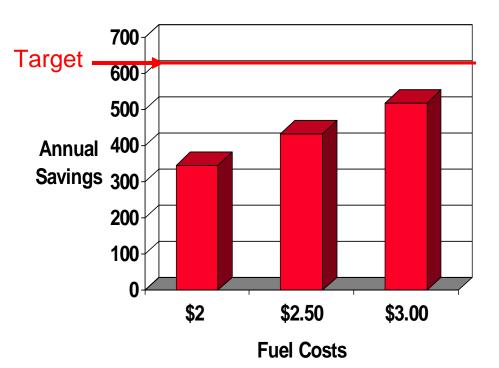
- EPA and CARB emissions standards are challenging
- Consumer acceptance is uncertain
- Diesel fuel consumer cost savings advantage over gasoline vary

US Diesel Prices Are Sometimes Higher Than Gasoline

Retail Diesel vs. Gasoline Prices

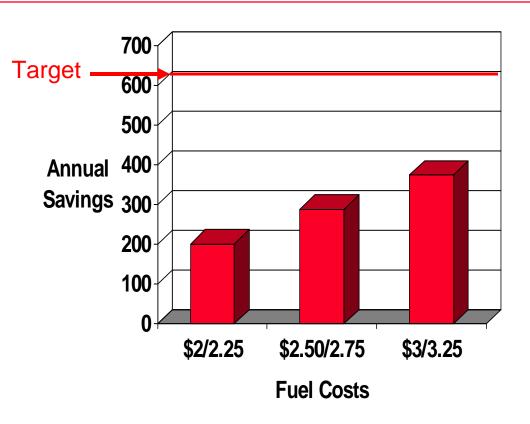
LDD Vehicles Are One of Several Possible Options for Improved Fuel Efficiency

- Consumers will decide on acceptance of options based on the:
 - Cost of vehicles
 - Cost of fuels
 - Potential for recovery of incremental vehicle costs through improved fuel economy
- Cost Effectiveness of Some Potential Options

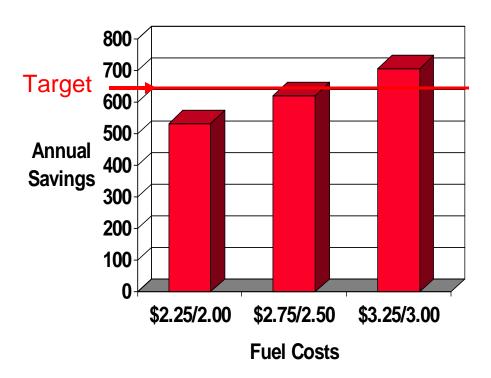

	Fuel Economy Benefit, %	Cost, \$
Improved Conventional Gasoline	26 - 28	800 -1,000
Hybrids	25 - 55	3,900 -5,600
Diesel	33 - 50	2,200 - 3,400

Source: K. G. Duleep, Energy and Environmental Analysis, Testimony at House Science Committee, and 2005 SAE Government/Industry Presentation

Cost Recovery Scenarios Gasoline = Diesel


- Assumptions:
 - » 15,000 mi/yr
 - » Diesel vs Gas MPG = 26 vs 20 (30%)
 - » \$3,000 price premium for diesel engine
 - » 5-year payback target

Cost Recovery Scenarios Gasoline < Diesel


- Assumptions:
 - » 15,000 mi/yr
 - » Diesel vs Gas MPG = 26 vs 20 (30%)
 - » \$3,000 price premium for diesel engine
 - » 5-year payback target

Cost Recovery Scenarios Gasoline > Diesel

- Assumptions:
 - » 15,000 mi/yr
 - » Diesel vs Gas MPG = 26 vs 20 (30%)
 - » \$3,000 price premium for diesel engine
 - » 5-year payback target

Summary/Conclusions

- US refineries are designed to maximize gasoline production
- European refineries are designed to maximize diesel production
- A major switch to diesel production in the US would require significant investment and many years for design and construction.
- Significant challenges exist for increased passenger car diesel growth in the US
- Consumers will decide on acceptance of options based on:
 - » Cost of vehicles
 - » Cost of fuels
 - » Potential for recovery through improved fuel economy

