CF8C-Plus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components

P.J. Maziasz, and J.P Shingledecker
Oak Ridge National Laboratory, and
M.J. Pollard
Caterpillar Technical Center

Research sponsored by the Heavy Vehicle Propulsion Materials Program, DOE Office of FreedomCAR and Vehicular Technology Program, under contract DE-AC05-00R22725 with UT-Battelle, LLC
CF8C-Plus cast stainless steel was developed to provide higher temperature capability and reliability for advanced diesel engine components.

- Cast stainless upgrade for SiMo cast-iron diesel engine exhaust components
Materials Need: High Performance Low-Cost Alloy was Needed to Replace SiMo Cast Iron

Some Candidate Alloy Compositions (wt%)

- SiMo Cast Iron: Fe-3.45C-4Si-0.6Mo-0.3Mn
- CF8C: Fe-19Cr-10Ni-0.07C-1.0Nb-0.7Mn-1Si
- CF8C-Plus: Fe-19Cr-12Ni-0.07C-0.07Nb-0.4Si-+Mn+N
- Ni-Resist: Fe-2Cr-35Ni-0.5Mn-5Si-1.9C

Improving the properties of less expensive alloys without the costly addition of Ni offered the best opportunity

CF8C-Plus = Best Results
Alloy Development: Mn and N were the “Plus” added to improve austenite stability

- Lower cost Mn and N were added instead of costly Ni for fully austenitic stainless steel
- CF8C = 15-25% Delta Ferrite, CF8C-Plus = 0% Delta Ferrite
CF8C-Plus Cast Stainless Steel won a 2003 R&D100 Award for Outstanding Heat-Resistance at 850°C, and Successful Commercial Scale-Up in only 1.5 years.

Creep-Rupture at 550-850°C

LMP (Larson-Miller Parameter) is calculated using creep-rupture time and temperature.
Engineered Microstructure

- CF8C-Plus Has “Super” Creep Resistance at 850°C Because Abundant, Stable Nano-NbC Precipitates Pin Dislocations

Creep Tested 850°C/23,000 h

(TEM, as cast)
CF8C-Plus Has Great Castability for Defect-Free Parts

Fluidity

- **CF8C-Plus (<0.5Si)** shows as-good or better fluidity compared to **CF8M (1.5Si)** at equivalent pour temperatures

From Ron Bird, Stainless Foundry and Engineering
In May, 2007, **CF8C-Plus** was submitted to ASTM for approval of a new heat-resistant cast alloy grade – **HG10MNN**

Welds of CF8C-Plus passed U-bend Ductility test (SF&E)

Welds of CF8C-Plus passed RT tensile tests for UTS and ductility, with 20% Better YS than base metal
Commercial Applications – Direct Replacement of NiResist for Natural Gas Reciprocating Engines at Reduced Cost *(Cost of CF8C-Plus = 80% of NiResist)*

45 lb static sand-cast **CF8C-Plus** exhaust component cast by Stainless Foundry and Engineering, Inc.
Caterpillar is now using **CF8C-Plus steel** for the CRS components which are on all heavy-duty highway truck diesel engines in 2007.

- Exhaust combustor (turbo exhaust + injected fuel) to clean out particulate filters: high temperature and rapid cycling conditions.
New Work on Step-Castings to get mechanical properties data on thin-sections, to support turbocharger and manifold applications
ORNL is using step-castings of CF8C-Plus and CF8C-Plus Cu/W to measure mechanical properties of the thin sections representative of heavy-diesel exhaust components.

- Stainless Foundry & Engineering made step castings of CF8C-Plus and CF8C-Plus Cu/W in late 2006.
Thin Sections of **CF8C-Plus** have refined dendrite/grain structure
CF8C-Plus thin sections have YS as good or better than thicker sections.
Preliminary data indicates **CF8C-Plus thin-sections** also have good creep and rupture resistance.
CF8C-Plus Cu/W has improved creep resistance compared to CF8C-Plus

- Good creep resistance in thin-section casting is important for turbocharger and manifold applications.
Conclusions for New CF8C-Plus cast austenitic stainless steel

• Castable, even as thin sheets
• Weldable
• Outstanding Creep Performance
• Cost-Effective
• Applications
 – Caterpillar CRS components (on-highway in 2007)
 – Exhaust components for NG engines
 – Turbocharger housings
 – Numerous other potential spin-offs