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We focus on early-injection, PCI-like combustion systems
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Conventional Diesel Combustion 

HPLI, Highly Premixed Late Injection 

HCLI, Homogeneous Charge Late Injection 
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Low-temperature combustion 

systems are attractive because:  

t  -PX /0x and PM emissions are 

obtained simultaneously 
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CO and UHC emissions can stem from cool, fuel-lean 
regions as well as fuel rich regions 

Constant φ & T,  P = 60 bar, Δt=2 ms, 21% O 2
 
Soot/NOx contours from Kitamura, et al., JER 3, 2002
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How will EGR influence the kinetics of CO and UHC 
oxidation? 

CO @ constant φ & T, P = 60 bar , Δt=2 ms 
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CO emissions impacted 

only in low­

temperature crevice 


regions 
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The isothermal constraint prevents heat 


release from raising the temperature and 


increasing the heat release rate
 

An adiabatic treatment (with pressure 

matched to experiment) is more repre­

sentative of regions away from walls
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Equivalence Ratio φ
 

t 5 IF  QFBL U FNQFSBUVSF OFFEFE U P P YJEJ[F
UHC & CO is independent of dilution 

 

t %JMVUJPO TJHOJöDBOUMZ JODSFBTFT UIF FRVJWB­
lence ratio needed to reach this temperature 



Engine & experiment
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Experimental PLIF images are corrected for distortion 
and laser sheet inhomogeneity 

Clearance volume reference grid 

Back-lit bowl reference grid 

Before correction 

Reference grid images in both the clearance volume 

and the bowl obtained at each crank angle allow 

separate distortion corrections for both images 

A flat-field correction also accounts 

for laser sheet intensity variation 

After correction a near seamless 

image is obtained 



 

 

 

Numerical simulations – background
 

KIVA release 2 coupled with Chemkin 

chemistry solver 

Ignition/combustion 
model 

Chemkin chemistry solver 

Mechanism ERC-PRF mechanism 
(39 species, 131 reactions) 

NOx mechanism Reduced GRI mechanism 
(4 species, 9 reactions) 

Soot model 2-step phenomenological 
model 

Turbulence model εRNG k- model 

Atomization/breakup
model 

KH-RT model 

ERC grid-size and time-step independent 

models (ref. SAE 2008-01-0970) 

Liquid/Gas phase 
momentum coupling Gas-jet model 

Collision/Coalescence 
model 

Radius-of-influence collision 
modelmodel 

Time-step calculation Mean collision time step 
model 

Parcel number control Re-group model 

Computational grid at TDC: 

Cut-plane 

Cell # : 35000 (IVC)
 :15000 (TDC) 



Operating conditions


We focus on a dilute operating 

condition with rising CO and 

UHC emissions, but reasonable 

combustion efficiency (≈ 98%) 

φglobal = 0.36 
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An optimal injection timing exists that minimizes CO, 
UHC, and fuel consumption 
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Considerable evidence suggests CO and UHC emissions 
are dominated by fuel-rich regions (mixing-limited) 

For SOI retarded from MBT timing, 


CO and UHC correlate inversely with 


ignition delay
 

Improved emissions with additional 

mixing time is inconsistent with CO 

and UHC stemming from over-lean 

mixtures 
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 (Similar results reported by Opat, et al.


 SAE 2007-01-0193)
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Numerical simulations and in-cylinder measurements 
clarify the spatial distributions of UHC 
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Simulation results show that UHC (and CO) become 
separated into distinct ‘rich’ and ‘lean’ regions 
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These separate regions 

persist throughout the 

remainder of the cycle
 
(see also Cook, et al. SAE 2008-01-1666)
 

Three dominant 

regions form: 

- Centerline and squish area (lean) 

- Deep bowl (rich) 



Experiments provide support for the simulated 
late-cycle UHC and CO distributions 
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UHC is observed in the ring-land 


crevice and centerline regions: 
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and can be strongest in a plane  

bisecting the sprays 

LIF-signal spectral characteristics near 

the crevice and injector are consistent 

with largely undecomposed fuel 

CO is observed distributed through-

out the (fuel-lean) squish volume: 
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Indicating that rich UHC sources may 

be less important than the simula­

tions suggest 



With advanced SOI, the squish volume becomes 
fuel-rich, and the bowl lean throughout 

Simulations indicate that 

UHC and CO emissions 

stemming from the squish 

volume dominate
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Increased squish volume CO and UHC seen with 


advanced SOI is only consistent with rich mixture
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Only diffuse, low UHC fluorescence is 

observed within the bowl 



Conversely, with retarded SOI the squish volume is 
over-lean and regions of the bowl over-rich 

Simulations indicate that 

increased UHC and CO 

emissions stem from both 

the squish volume and the 

bowl 
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port the simulated distributions 



As load decreases, simulations show that the import­
ance of lean emissions from the squish region increases 
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Recap (and redress)
 

UHC and CO emissions from 

PCI-like combustion systems 

are found to stem from three 

main regions of the cylinder. 

The cylinder 
centerline region 
(including dribble) 

The squish region, 
including the crevice 

The central 
bowl region 
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NPSF QSPOPVODFE (increased Tin, high pressure EGR, VVA, decreased EGR) 
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