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Goal of research



 

In general, kinetic models of fuels are needed to allow the 
simulation of engine performance for research, design, or 
verification purposes
–

 

Desire to match a specific fuel to support design work
–

 

Desire to match a group of fuels for fuel sensitivity studies
–

 

Desire to accurately reproduce chemistry effects for more 
open study of future fuel options



 

For this research, we wish to gather and develop

 

tools

 

to allow 
kinetic modeling of an HCCI engine over a wide range of 
surrogate fuel blends
–

 

Develop and verify model over a range of experimental data
–

 

Use model to help plan and estimate results for future 
studies

–

 

Learn how to represent a wide range of fuels with surrogate 
mixtures

–

 

Develop efficient modeling and mechanisms for rapid 
calculation of results
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Modeling options



 

Single zone kinetic model
–

 

Can predict ignition
–

 

SAE 2008-01-2399 (ORNL and RD)



 

Multi-zone kinetic model (this talk)
–

 

Ignition, burning
–

 

Some emissions capability



 

Multi-zone kinetic model with CFD front end
–

 

CFD front end defines zone conditions at start of combustion
–

 

Evaluated in SAE 2009-01-0669 (RD and ORNL) 



 

Multi-zone kinetic model with zone mixing
–

 

Ignition, burning
–

 

Better chance to predict emissions



 

CFD model
–

 

Most true to flow, mixing, and heat loss processes
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ORNL HCCI engine


 

Modified from Hatz single cylinder 
diesel



 

Fully premixed, dilute, with ignition 
controlled by intake heating



 

Simple platform for fuels research
–

 

Performance dominated by fuel 
effects



 

Recently upgraded with boost, 
throttle, improved measurements
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Experimental data



 

This research encompassed 18 experimental HCCI engine runs
–

 

3 gasoline surrogate blends
–

 

6 combustion timings (intake temperatures) per fuel
–

 

One fuel rate (≈9.1 grams per minute)
–

 

1800 rpm
–

 

2.4 to 3.2 bar IMEP


 

Fuels are
–

 

PRF, 87 RON
–

 

TRF, 87 RON
–

 

PRF + 30% ethanol, 105 RON


 

We have much more data, including diesel and bio-diesel, and 
plan further analysis based on the results of this preliminary 
study
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Multi-zone model used for this presentation


 

Chemkin MFC, by Reaction Design



 

Combined gasoline ethanol mechanisms, by Reaction Design
–

 

1747 species, 8487 reactions
–

 

Primarily derived from open literature sources
–

 

Merged, reconciled, and verified by Reaction Design



 

Using 5 zone model with heat loss
–

 

Woschni correlations


 

Coefficients same as SAE 2009-01-0669
–

 

Details of zones:
ZONE % MASS % SURFACE 

AREA S.A./MASS

1 5 45 9.0
2 15 25 1.7
3 20 15 0.8
4 25 10 0.4
5 35 5 0.1
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MFB50 match, model to experiment



 

Plots show agreement 
for variables between 
model and experiment



 

Fuels differentiated by 
symbols



 

Single trend line shows 
good R2

 

for all fuels 
fuels



 

Slope not 1:1

MFB50
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Cycle work



 

Work shows good 
agreement, need wider 
range of data



 

Need to differentiate 
HPL and LPL work in 
future experiments
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HR, P, T comparisons, TRF run 2



 

Model has faster HR



 

Temperatures about same



 

Model peak pressure higher

TRF run #2 - measured
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

 

At this moment, we are 
also resolving issues 
related to our experimental 
heat release
–

 

More on this topic later

MODELED    

MEASURED  
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Ca10-90 vs. MFB50

y = 1.17x + 2.88
R2 = 0.48
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

 

Shown at 5.7% COV



 

Is it more representative to 
model individual cycles or 
cycle average?

IMEP vs. cycle number
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

 

Cycle variation probably 
due to fuel flow or gas 
exchange variations
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NOx emissions



 

NOx emissions follow 
a definite trend line



 

Model under-predicts 
NOx emissions

NOx
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CO emissions



 

Model predicts almost 
no CO emissions



 

CO destruction is 
exothermic and hard to 
regulate once it starts



 

5 zone model does not 
mimic in-cylinder 
conditions well enough
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Zone CO vs. CA, TRF run 2

CO vs. CA
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

 

CO forms as 
combustion 
intermediate, 
destruction is 
very rapid



 

In this case, 
some CO is 
formed in zone 1 
(wall quench 
zone), which 
does not undergo 
combustion
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HC emissions



 

It is possible to leave 
ball park levels of HC 
in wall quench zone
–

 

but



 

This HC does not 
follow any trend

HC
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Zone HC vs. CA, TRF run 2

HC vs. CA
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

 

HC in hot zones is 
completely burned



 

HC in zone 1 (wall 
quench) is largely 
un-reacted



 

We tuned total HC 
by size of zone 1
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How did we do overall?
VARIABLE SLOPE R2 NOTES

Our goal 1.0 1.0 Perfection!
MFB50, deg. CA 0.54 0.79
CA10-90, deg. CA 0.12 0.40
Peak pressure, bar 0.21 0.33
Peak temperature, K 0.37 0.50
Work, dyne-cm 1.18 0.85 HPL vs. HPL+LPL
Charge mass, gm. 0.80 0.80
Oxygen, % 0.81 0.78 Wet vs. dry (≈3.5% corr.)
Carbon dioxide, % 0.82 0.88 Wet vs. dry (≈3.5% corr.)
Nitrogen oxides, ppm 0.53 0.88 Wet vs. wet
Carbon monoxide, ppm -0.01 0.01 Wet vs. wet
Hydrocarbons, ppm 0.05 0.01 Wet vs. wet
Formalydehyde, ppm -0.28 0.38
Acetaldehyde, ppm -0.16 0.37
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Conclusions


 

The use of a simple, 5 zone engine model for kinetic modeling 
of fuel effects is not practical



 

A simple 5 zone model gave fairly good results for work, charge 
mass, O2, CO2

 

, NOx

 

, and MFB50



 

CO is very difficult to reproduce with a simple model, it’s 
destruction is too rapid



 

HC can be left behind in a wall quench zone, but this does not 
represent actual in-cylinder processes



 

Performing detailed comparisons between experimental data 
and modeling points out the need for:
–

 

Improving experimental measurements
–

 

Better definition of experimental conditions
–

 

More complex, more realistic engine models
–

 

And probably, better mechanisms
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Experimental improvements underway


 

Definition of engine conditions
–

 

Adding fire-deck temperature and heat flux probes
–

 

Direct measurement of C/R and TDC
–

 

Working to improve emissions and flow measurement
–

 

Reconcile charge mass between measurements and model
–

 

Cycle resolved gas exchange capability



 

Improved heat release
–

 

Shielded pressure transducers
–

 

Recording both individual cycle HR and cycle average
–

 

Reconcile fuel energy per cycle to HR, heat loss, and 
combustion efficiency
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