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Infroducing the Engine Combustion Network

« Collaborative modeling/experimental website started.
* http://www.ca.sandia.gov/ECN

Address @ http: /fwww.ca.sandia. gov /e findex.php
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Engine |:_[__IIII|]IIStiI]Il Network

Overview

___________________________ The purpDEE UF th|5 Eite iE to provide an open fDrL.Iﬂ"I Fﬂr internati0ﬂ3| callabﬂratiﬂﬂ aﬂ"lDﬂg
e experimental and computational researchers in engine combustion. Patterned after the
___________________________ Turbulent Nonpremixed Flame Workshop, the objectives of the Engine Combustion Network
References (ECN) are to:

Tutorial: Diesel _ _ _ _ _
Spray Visualization 1. Establish an internet library of well-documented experiments that are appropriate for

""""""""""""""" model validation and the advancement of scientific understanding of combustion at
conditions specific to engines.

2. Provide a framework for collaborative comparisons of measured and modeled results.

3. Identify priorities for further experimental and computational research.

Maintained by the Engine Combustion Department of Sandia National Laboratories, data
currently available on the website includes reacting and non-reacting sprays in a constant-
wvolume chamber at conditions typical of diesel combustion. The website will be expanded in
the future to include datasets and modeling results of scientific interest to participants in

the ECN. n
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ECN idea modeled aftter the Turbulent Non-

Premixed Flame (TNF) Workshop.

» Use a series of well-defined, canonical flames to promote

model development applicable to turbulent combustion.
Simple Jet Piloted  Bluff Body Swirl Lifted e IPlloted Flame D: Conditional Means at x/d=15 e
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90 participants at last workshop.

TUD-PDFILDM

» This type of dataset and focused modeling effort does not
exist for engine conditions!

 We need to (and can) delve deeper to understand the
workings of engine sprays. N
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Engine development depends upon accurate,
] ] ]
ol

predictable models

Experiments Computer model
* Well-defined boundary —>! - Sum of many sub-models
conditions &——— * Adds knowledge about things that
* Quantitative diagnostics in are not “measurable”
harsh engine environment « Parametric design optimization
 Improved physical « Saves time and cost over
understanding “‘hardware” iteration

High-Efficiency, Low-Emissions Engine
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Address :Elhth:u:,.",."'.-\".-\".-\'.ca.sanu:lia.guvfemfwdatafcunstant'l.-'ul.php = [ Links ** @ "
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Engine Gombustion Network
___________________________ " ] A | *‘ﬁh" -
ECN Home Constant-Volume Diesel Combustion
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--------------------------- A wide range of ambient {charge-gas) environments

E}?:ssat?g:lﬂtlsr?ieon can be simulated at the time of fuel injection in this

B facility, allowing the effect of each wvariable to be
1 Experimental ) ) )
Data Search assessed. With full optical access, the following

ambient conditions can be generated:

2 Combustion

~ VesselGeometry o Ambient gas temperatures from 450 K to 1300 K
3 Ambient
Conditions + Ambient gas densities from 3 to 60 kg/m*
4 Thermal & ) )
Velocity s Ambient gas oxygen concentrations from 0% to
Distribution 21%,
5 Injector
Characterization These conditions span or exceed those typically experienced in a diesel engine.
& Fuels L : . . . .
------------- -------------- Fuel is injected using common-rail fuel injectors with the following parameter range:
7 Definitions S )
P # Injection pressures above ambient from 40 to 200 MPa
& Experimental
Diagnostics :
_________ gnoshes s Mozzle sizes from 0.05 to 0.5 mm
8.1 Soot
8.2 Jet s #2 diesel, single-component reference (n-heptane, cetane), and oxygenated fuels
Penetration
"""" g 3LIC|L.IIC| The data obtained in this facility is useful for model development and validation because of
Penetration the well-defined boundary conditions and the wide range of conditions employed. {Go to
_______ B ength experimental data search).
8.4 Lift-Off
Length Links at the left describe the methods for generating these conditions, the diagnostics

8.5 Ignition Delay applied, and the archival data acquired in the facility.

8.6 High-Speed
Movies & Flow
Visualization




Data available on the website
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Data obtained over the past 15 years at well-
characterized ambient and injector conditions.
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High-speed Schlieren Imaging (Vapor)
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Experimental Conditions S 307
1000 K gas temperature <20 Liquid
14.8 kg/m3 gas density 10l Iqul
1540 bar injection pressure
0.100 mm nozzle orifice 0 500 1000 1500 2000 2500
n-heptane Time ASI [microseconds] r-\
2.
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JJJ(JIJJ measurements in harsh

c, IJJ:J_”"JUJJL_)‘)‘) ure environment.

Raw image Rayleigh Molecular Cross-Sections

. of/cg =55 n-heptane/DCSF ambient
RPN N iabatic mixing (Espey et al.

e b @ Adiabat (Espey et al. [1996])

IRj (0f/o4+Ng/Ns) T,

Tmix - f(Na/Nf)

Tmix

* Measure both I, Ig;

— Allows in-situ calibration for I ,
variation in laser sheet intensity

— Beam-steering or divergence
addressed by using I , on bottom
and top

 Measurement provides
— Mixing: N,/ N;
— Temperature

See SAE 2007-01-0647 U
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Axial position
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* Mixture fraction decays as 1/x, a well-known result for gas jets.
« Radial profiles shows self-similarity.
« Schlieren detects the very outer edge of the vaporizing spray.

TRANSPORTATION ENERGY CENTER \%F,




l on ECN spray

* Quantitative measurements permit direct comparison to
results from advanced CFD models.

» Moves beyond “conceptual model” or “global” parameters to
more detailed analysis.

- SAE 2008
— Papers 2008-01-1331, 2008-01-0968, 2008-01-0961, 2008-01-0954

 SAE 2009
— Papers 2009-01-1971

« ASME

— Vishwanathan and Reitz

« |CLASS 2009
— Abraham and Pickett
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conditions, long after start of injection

]

Non-reacting (0% O,) Baseline n-heptane conditions
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Ire Experimental Collaboratio

Baseline experimental
condition defined “Spray A”:

Ambient;

Michigan Tech. Univ.
Vessel temperature
composition

— 15% 0,, 900 K, 60 bar
Injector:

Argonne (x-ray source)

Internal needle movement
Near-nozzle liquid volume

— common rail, 0.090 mm nozzle,
KS1.5/86

— Multi- (3) and single-hole nozzles
— 1500 bar, 363 K
— n-dodecane

Bosch has donated “identical”
injectors/nozzles to Sandia.

— Sandia will distribute to other

groups for voluntary
experimentation at this condition.

Participating facilities must
verify boundary conditions.
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1 Spray A

=

IFP
Spray velocity
Combustion

CMT

Rate of injection
Droplet diameter

Meiji Univ.
Soot
formation

Sandia
Liquid and vapor mixing
Combustion diagnostics




X-ray projection by
Argonne National Lab

-100 ps )\

SEM image of
nozzle outlet

r 181 um effective |
k diameter

\ -

Experimental measurements

* Nozzle shape

* Internal needle movement
« Discharge and area contraction coefficients
» Rate of injection

* Near-nozzle liquid volume fraction

* Droplet size and velocity

« Maximum liquid penetration

« Vapor penetration rate

* Velocity and turbulence within spray
« Mixture fraction (non-reacting)

« Ignition delay

« Cool flame position and timing

* Heat-release rate

« Quantitative soot distribution

« Lift-off length
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summary: e
of

-

ewbomém 1-efficiency engines.

Experiments

understanding

Computer model

* Well-defined boundary —>! - Sum of many sub-models
conditions &——— * Adds knowledge about things that
* Quantitative diagnostics in are not “measurable”
harsh engine environment « Parametric design optimization
 Improved physical « Saves time and cost over

“hardware” iteration

High-Efficiency, Low-Emissions Engine
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eTemperature Variation

DATA SEARCHING UTILITY

Simply clide on velues to namow selection or choose seledct conditions below.
Results will be displayed sfter queary yields less than 200 records.

* Baseline Condition Diesel * Baseling Conditicn n-heptane * Soot vs Inj Press =
reset search = Scot ws Crifice Diameter * All Scot Measurements

Soot vs Ambient O

Experimental T Ambient O, Ambient T Amb Dens Inj Pres
pe YPE Kl | [kg/m3] | [MPa]

ALL ALL ALL ALL ALL
Soot 21 800 14.8 138
Lift-Off Length 850
Ignition Delay S00
Jet Penetration 950
Liquid Length 1000
High Speed Movie 1100

1200

1300

D Expand results table to show more data columns
Clide here fgr the Column header definitions
Tabular d may be copied and pasted into delimited text or Excel file.

5 T Eg d Inj _F'III"EI Liquid [Lift-Off | lgn
2\1-a \kal |~ | P |, .| Tn LengthLength| Dly
%] |KT | 5 ™™ pypg) YR8 1) “mm] | mm] [ms]

800 [14.8/0.180| 138 | D2 436 | | 652 [2.12| non
850 [14.80.180/ 138 | D2 (436 | | 41 [1.24[non
900 [14.80.180] 138 | D2 (436 | | 31.2 [0.88/non

21| 0
21 0
21 0
121|950 [4.8/0.180| 138 [ D2 (436 0 | 247 [0.69/non
21 fooofr48/0.180] 138 | D2 (436 0 | 218 [0.56]non
21 y100p480.180) 138 [ D2 (436 0 | 159 [0.38]non
21 {200]14.8/0.180] 138 | D2 (436 0 | 125 [0.29]non
21 43014.8/0.180[ 138 [ D2 (436 0 | 92 [0.23[non

*EGR Variation (Baseline n-heptane)

DATA SEARCHING UTILITY

Simply clidk on values to namow selecticn or choose select conditions below.

Results will be displayed after guery yields less than 200 records.

* Baseline Condition Diesel * Baseline Condition n-heptane * Soot vs Inj Press = Soot vs Ambient 02
reset search ® Soot vs Orifice Dismeter = All Soot Messurements

. Ambient O, Ambient T/Amb Dens Inj Press Noz Diam| Fuel | Tp,q
Experimental Type
[%] [KI] [kg/m3] | [MPa] | [mm] | Type | [K]

ALL ALL ALL ALL ALL ALL ALL ALL
Soot 0 1000 14.8 150 0100 NHPT 373
Lift-Off Length 21

Ignition Delay 15

JetPenefration 12

Ligquid Length 10

High Speed Movie g

I:l Expand results table to show more dats columns
Clidk here for the Column header definitions

T lar data may be copied and pasted into delimited text or Excel file.

(= Inj Fuel Liquid |Lift-Off Ign Press Sootfy
%/uz éf[&]@%%LﬁhLﬁh%E [Emaﬁl Movies Pe:e_ettate
Eﬂ000|14_8|0_100| 150 NHPT|373| 92 | 0 | 0 |[none| none | Shadow [PenvsTime
21 “\000 14.8/0.100 150 NHPT 373 0 17 |0.53|PysT Imgf,xy csr?_e%? none
E‘ 00014.80.100 150 NHPT 373 0 | 234 0.73|PysT [maf,xy gﬁt{l none
12 flooo/12.80.100 150 ‘NHPT 373| 0 | 292 (095 PvsT imaf,xy gﬁt{l none
10 hooo/12.80.100 150 ‘NHPT 373| 0 | 351 |1.13|pvsT imaf,xy CSh[:]e[rJTtu none
8 [1000/12.80.100 150 NHPT|373| 0 | 423 |152|pyeT imof,xy| Chemi | none
|/
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