

... for a brighter future

Development and Demonstration of a Prototype Omnivorous Engine

Christopher Cooney, Thomas Wallner, Steve McConnell Argonne National Laboratory

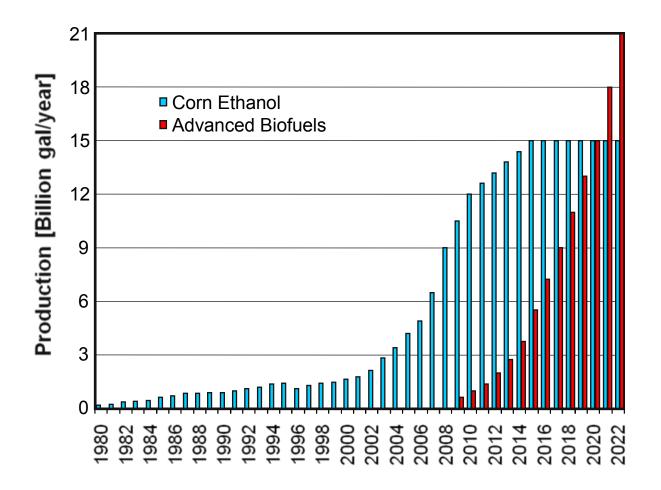
UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC DEER 2009 – Directions in Engine – Efficiency and Emissions Research Conference

Deerborn Michigan

Acknowledgements

Gurpreet Singh and Kevin Stork (DoE)


Simon Thwaite and Paul Killmurray (Mahle)

Visteon

George Zhu and David Hung (MSU)

Motivation Enable Efficient Use of Alcohol Based Fuels

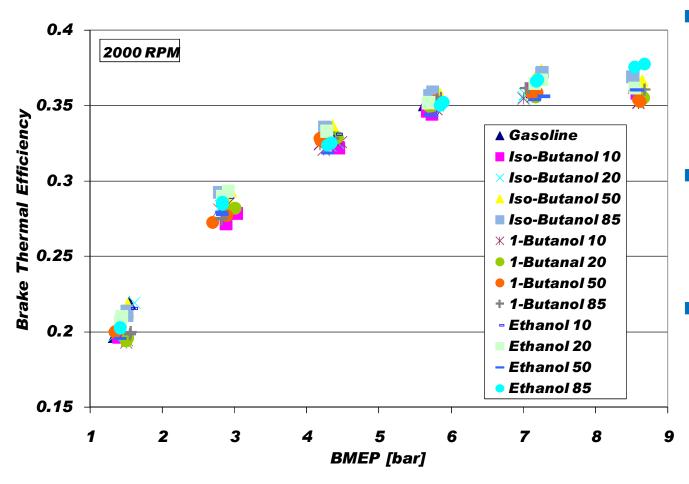
- U.S. Renewable Fuel Standard requires and increase of ethanol and advance biofuels to 36 billion gallons by 2022.
- Advanced Biofuels are fuels not made from corn (Cellulosic).

Purpose for Work

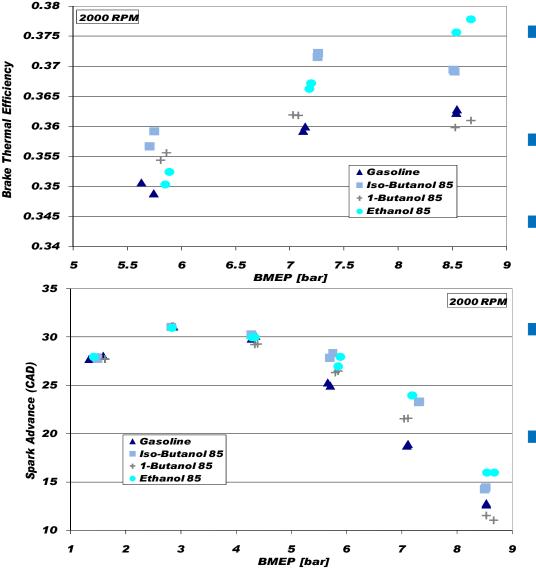
- The Omnivorous engine is a research project designed to understand flex fuel combustion and optimize a single engine to run on many different fuels with optimum efficiency.
- This work is a benchmark and is designed as a "what if" of how a modern SIDI engine calibrated for gasoline handles oxygenated fuels of butanol and ethanol.
- Previous work done focused on ethanol and more recently lower butanol blends. This data is a continuation of that work extending the baseline test plan to include higher alcohol blends of 1-butanol and iso-butanol.

Limited engine test data for butanol is available in the literature.

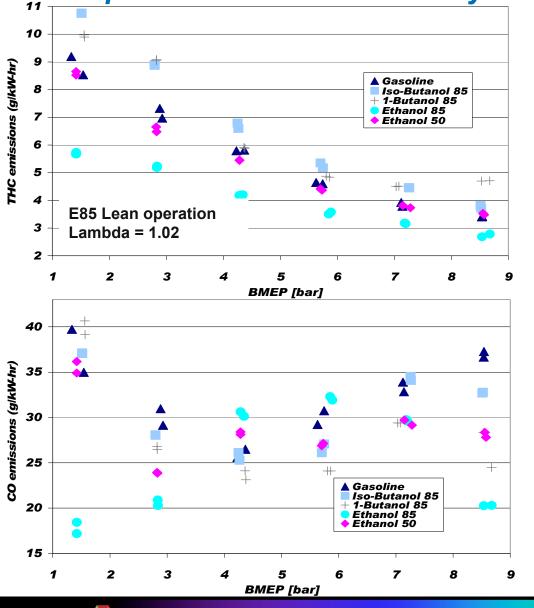
Important Fuel Properties					
	Ethanol		1-butanol		iso-butanol
		Gasoline	Ethanol	1-butanol	Iso-butanol
	Composition (C,H,O) (% mass)	86, 14, 0	52, 13, 35	65, 13.5, 21.5	65, 13.5, 21.5
	RON	96	109	98	105
	MON	78	90	84	91
	Latent Heat of Vaporization (@25°C) (kJ/kg)	380 - 500	919	706	686
	Viscosity (@25ºC) (mPa)	0.881	1.10	2.544	4.132
	Solubility in water	<.1	Fully miscible	7.7	7.6
	Relative Energy Content (%)	100%	66%	85%	84%


Experimental Setup

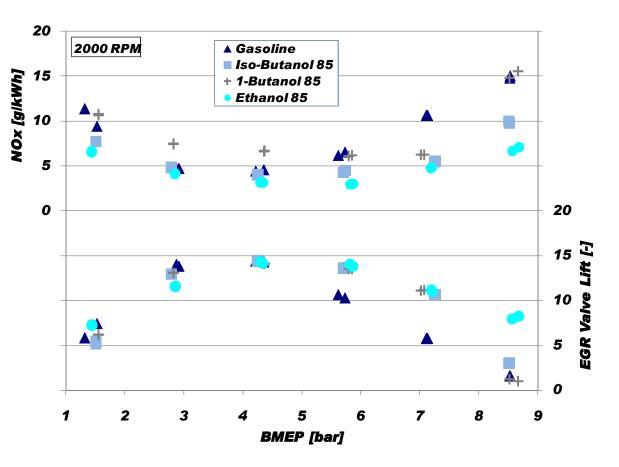
- Opel 2.2 | Ecotec Direct (SIDI) (GML850)
 - 4 Cylinder
 - Direct Injection (homogeneous)
 - 4-valve DOHC
 - Electronic EGR control
 - Operates closed loop lambda control
 - 12:1 Compression ratio
 - Manufacturer recommended 95 RON fuel quality
 - Equipped with Knock sensor
 - Stock ECU calibrated for use with gasoline fuel
- Measurement
 - Cylinder Pressure
 - Fuel and Air mass flow
 - Engine out emissions with Horiba MEXA Model 7100D
 - Spark and injection


Brake Thermal Efficiency at 2000 RPM

- Results from this work find that engine efficiency and emissions are affected more by the engine controls over the type fuel used
- At low loads the difference in calculated efficiency among the fuels is difficult to determine
- At the high load condition, efficiency numbers are spread further apart.

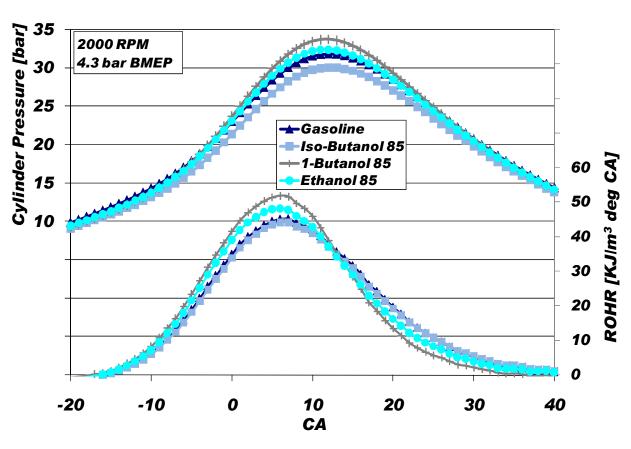

Effect of Fuel Octane Rating on Engine Thermal Efficiency

- Zoom in, we can see a consistent separation in the data and the higher alcohol blends are at the top of the efficiency range
- Engine equipped with a knock sensor that retards spark from the calibrated spark map.
- The results indicate at high load condition a relative efficiency advantage for ethanol and iso-butanol of about 2.5% over gasoline
- Data shows that there is no noticeable difference in spark timing for the different fuels at engine loads up to 4.3 bar.
- At high engine loads the influence of knock resistance between the different fuels is obvious.


Comparison of CO and Total Hydrocarbon Emissions

NATIONAL LABORATORY

- Differences in Carbon Monoxide and Total Hydrocarbon emissions were not found to be attributable to differences in fuel properties but rather the lambda control strategy.
- Engine Controller has limits in deviating from the calibrated fuel map.
- These limitation were reached with E85 and resulted in the engine running at a slightly lean condition.


Comparison of NOx and EGR valve lift

- Relation ship of increased NOx formation with reduced exhaust gas recirculation.
- At increased load a larger separation of oxides of nitrogen exist which are mainly due to differences in the amount of EGR valve lift.
- Results show that 1butanol has highest NOx output at low and mid loads and this is believed to be a result of peak cylinder pressure.

Average Peak Cylinder Pressure

- 1-butanol results in the highest peak cylinder pressure.
- ECU controlled spark timing remains the same at low and mid engine load due to absence of knock.
- ROHR shows shortest combustion duration and highest maximum rate of heat release for 1-butanol.
- Ethanol shows a shorter combustion duration as well as higher ROHR over gasoline which corresponds to higher flame speed of ethanol.

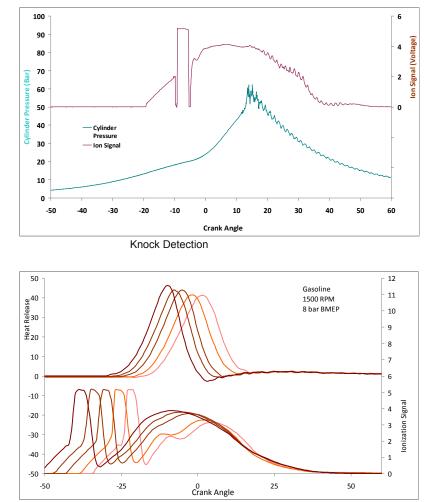
Conclusions

- Both 1-butanol and iso-butanol have a 17% higher energy content than ethanol which narrows the shortfall in vehicle fuel economy.
- Brake thermal efficiency at low and medium engine load up to 4.3 bar do not show any significant difference between butanol and ethanol fuel blends.
- At high engine loads ethanol and iso-butanol show advantages in brake thermal efficiency over gasoline. The increased Anti-Knock index of the higher blends of these fuels allows the ECU to maintain proper spark advance for appropriate combustion phasing.
- A comparison of rates of heat release suggests that the flame speeds for 1-butanol are higher than ethanol. ROHR of iso-butanol and gasoline in the data are very similar. Actual flame speed values for butanol will be verified as part of future work.

Future Work

Non-Regulated Emissions

- Alcohol fuels are expected to show differences in emissions levels of currently non-regulated constituents.
- An FTIR was used to collect the data of non-regulated emissions from ethanol and butanol, gasoline blended fuels.
- Combustion Sensing
 - Work is being done with Ion detection at the spark plug for use as a in-cylinder combustion feedback for control strategy to optimize combustion phasing.


The Ionization Sensor Allows for an Ignition System with Combustion Feedback

Determine combustion events and phasing

Knock detection Test Files (R87, E20, E40, E60, E85) RPM=2000 Load=500 ST=22(DBTDC R87 E20 E40 E60 E85 \parallel 40 50 Ethanol % level 1 5 0.5 -40 -20 20 40 60 80 100 -80 -60 0

Ionization signal is used to:

Infer fuel blend (% ethanol)

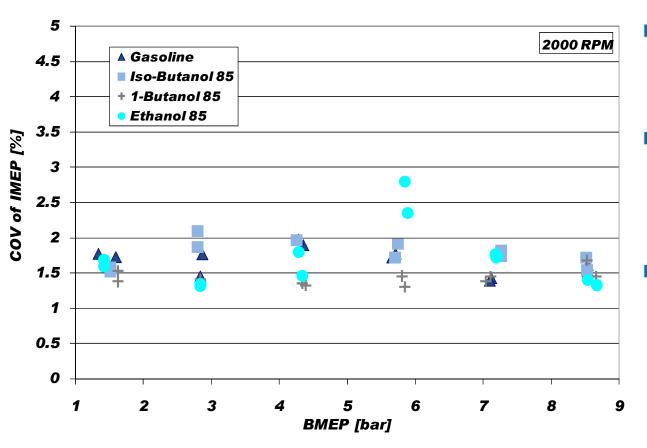
Spark Sweep to Show Combustion Phasing

... for a brighter future

Development and Demonstration of a Prototype Omnivorous Engine

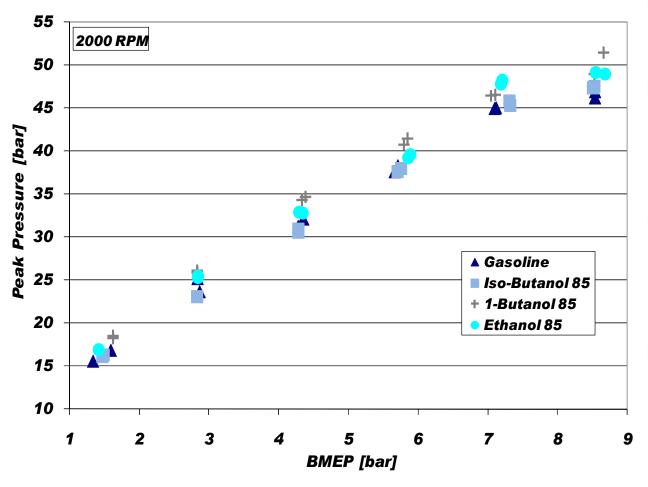
Christopher Cooney, Thomas Wallner, Steve McConnell

Argonne National Laboratory



A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC DEER 2009 – Directions in Engine – Efficieincy and Emissions Research Conference

Deerborn Michigan


COV of IMEP

- It is important that use of alternative fuels does not compromise the combustion stability
- Combustion stability for all operating points with all fuels is below a value of 3 indicating a very stable combustion
- No trend suggests a deterioration of combustion stability with any of the alcohol fuels in comparison to the gasoline baseline.

Average Peak Cylinder Pressure

- At low load peak cylinder pressure correspond well with NOx formation
- At higher engine load the trends are not as easily traceable because of significant differences in spark timing.
- ECU controlled spark timing remains the same at low and mid engine load due to absence of knock.
- Results show that 1butanol has highest NOx output at low and mid loads and this is believed to be a result of peak cylinder pressure faster burn rate.

