

ADVANCED PROPULSION TECHNOLOGY STRATEGY

2 MODE

Tom Stephens

Vice Chairman, Global Product Operations General Motors Company

PETROLEUM SUPPLIES...

35 % WORLD'S ENERGY 96% OF TRANSPORTATION ENERGY

MEGA TRENDS FOR FUTURE POWERTRAINS

ENERGY DIVERSITY

POWERTRAIN EFFICIENCY

ADVANCED PROPULSION TECHNOLOGY STRATEGY

DOWNSIZED TURBO GAS ENGINE

CHEVROLET CRUZE

1.4L TURBO ECOTEC

IMPROVING GASOLINE ENGINES

- Modular and Flexible Architectures
- Reduced Mass
- Improved Combustion Technology
- Integration of Leadingedge Technologies

Spark Ignition

Direct Injection

Cam Phasing, Variable Valve Lift, Active Fuel Management

Downsized SIDI Turbo Boosting

Port Deactivation with EGR

HCCI – Homogeneous Charge Compression Ignition

CHEVROLET EQUINOX WITH 32 MPG CLASS-LEADING HIGHWAY FUEL ECONOMY

30% Fuel Economy Improvement with Powertrain and Vehicle Enablers

- ¶ Deceleration Fuel Cut-off
- ¶ Idle Speed Reduction
- ¶ Electronic Returnless Fuel System
- ¶ Aerodynamic Drag Reduction
- Regulated Voltage Control
- ¶ Optimized Tire Rolling Resistance

HOMOGENEOUS-CHARGE COMPRESSION-IGNITION (HCCI)

DIESEL ENGINES – ACHIEVING THE LOWEST EMISSIONS

DURAMAX 6.6L TURBO DIESEL

GMC SIERRA

6.6L TURBO V-8

ARGONNE NATIONAL LAB

SANDIA NATIONAL LABS

OAK RIDGE NATIONAL LAB

PACIFIC NORTHWEST NATIONAL LAB

GM ETHANOL VEHICLES

OVER 5.5M VEHICLES WORLDWIDE AND 19 MODELS IN NORTH AMERICA

ENERGY DIVERSITY – ETHANOL

ENERGY DIVERSITY – CNG AND LPG

26

Petroleum and Biofuels

(Conventional and Alternative Sources)

Electricity and Hydrogen (Zero Emissions Energy Sources)

Increasing Electrification

MILD HYBRID SYSTEM

- ¶ Up to 20% city fuel economy improvement
- ¶ 115 volt, 15kW system
- ¶ Midsize vehicles
- **¶** North America and Asia

2-MODE RWD HYBRIDS

2-MODE RWD HYBRIDS

- ¶ Up to 40% city fuel economy improvement
- ¶ City fuel economy equal to 4-cylinder sedan
- ¶ Tow up to 6,100 pounds
- ¶ Only full hybrid for full-size trucks and SUVs

PLUG-IN 2-MODE FWD HYBRID

- ¶ Front-wheel-drive architecture
- ¶ Active program under development for production
- ¶ Beginning in 2012

ELECTRIC VEHICLE WITH RANGE-EXTENDER

25-50 Miles Battery Electric Drive + Hundreds of Miles Extended-

Range Driving

LITHIUM-ION BATTERY

- ¶ 16-kWh battery pack
- ¶ High energy, high power in minimized package
- ¶ 8-year/100,000mile warranty

Engine Generator

Lithium-Ion Battery

111 kW Electric Drive Unit

Charge Port

CHARGING AND INFRASTRUCTURE

POWERTRAIN ELECTRIFICATION

ELECTRIC MOTORS POWER CONTROL

BATTERIES

FUEL CELLS

GLOBAL BATTERY SYSTEMS LAB

BROWNSTOWN TOWNSHIP BATTERY MANUFACTURING PLANT

PROJECT DRIVEWAY

PRODUCTION-INTENT

6,500 EVERYDAY DRIVERS CRIMINAL C

1,700,000 MILES LOGGED

ENERGY DIVERSITY AND POWERTRAIN EFFICIENCY

- ¶ Future powertrains must be driven by both improved efficiency and energy diversity
- ¶ Ethanol is the best near-term option for energy diversity
- ¶ CNG and hydrogen will increase in importance over time
- ¶ Electrification improves efficiency and offers the potential for energy diversity, while providing a fun-to-drive car with new customer features
- There is no silver bullet ... the customer will ultimately choose the technology providing the most value

GM ROAD-LAB-MATH (RLM) STRATEGY

- ¶ Fundamental strategy to achieve:
 - Higher-quality design
 - Reduced structural cost
 - Faster product development
- ¶ Enable first-time capable designs
- ¶ Explore a range of what-if scenarios
- ¶ Minimize testing

OPTICAL DIAGNOSTICS AND CFD ANALYSIS

MULTIDIMENSIONAL NUMERICAL SIMULATION SPRAY, IGNITION, COMBUSTION, AND EMISSION MODELS

EASAT: ENGINE & AFTERTREATMENT SYSTEM ANALYSIS TOOLS PREDICT TAILPIPE EMISSIONS AND FUEL CONSUMPTION

- Powertrain Model Architecture CRADA
- ¶ Argonne National Lab and General Motors
- Plug-and-play environment and architecture supports powertrain control systems design, analysis, and development
- ¶ Currently being rolled out as the production tool for GM controls algorithms development

WHAT IS THE FUTURE?

High-speed computing grid needed for:

- ¶ Large (CFD) system simulation
- ¶ High-fidelity models
- Predictive combustion engine data before actual hardware is available
- ¶ Multi-controller simulation
- ¶ Optimization studies, limited by current computing throughput

EXTERNAL COLLABORATIONS

¶ National Labs

- Sandia Combustion research
- Oak Ridge Diesel particulate filter and ethanol degradation CRADAs
- Pacific Northwest Urea SCR CRADA
- Argonne Plug-and-play model architecture
- DOE initiative on predictive numerical simulation
- ¶ University network
 - Collaborative Research Labs: U. Michigan, U. Wisconsin
 - Shanghai Jiao Tong U., Tech. U. Darmstadt, Penn State

