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Background & Motivation
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an increase of ethanol and advanced

biofuels to 36 billion gallons by 2022.

> Iso-Butanol as possible
advanced biofuel?
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Objectives

B Assess the potential of blending gasoline with several
alcohol fuels for use in a gasoline direct injection (DI)
spark ignition (SI) engine.

B Evaluate the effect of ethanol and butanol
addition on regulated and non-regulated
emissions compared to gasoline baseline.

B Utilize Engine Hardware-In-Loop
capability to characterize emissions
trends over a simulated test cycle.
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Fuel Specifications

Gasoline Ethanol iso-Butanol
Chemical formula C,-Cp, C,H:OH C,H,OH
Composition (C, H, O) Mass-% 86,14, 0 52,13, 35 65, 13.5, 21.5
Lower heating value MJ/kg 42.7 26.8 33.1
Density kg/m?3 715 - 765 790 802
Octane number ((R+M)/2) |- 90 100 103
Stoichiometric air/fuel ratio | - 14.7 9.0 11.2
Latent heat of vaporization |kJ/kg 380-500 919 686
/ Fuel Oxygen \

Ethanol Blends

Butanol Blends

Constant oxygen mass content

-

(%-mass)
E10 3.7 iso-Butl6
E50 18 iso-But83

Blend lower heating values

/

Gasoline: 42 MJ/kg
E10/B16: 41 MJ/kg
E50/B83: 35 MJ/kg
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N
Experimental Methods - Steady State Testing

B Opel 2.2 | Ecotec Direct (GM L850)
B SIDI 4-Cylinder Engine, no VVA
B ECU calibrated for gasoline

B Emissions measurement
B Horiba MEXA Model 7100D-EGR
B AVL Sesam FTIR
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Regulated Emissions

Operating Points
3000 rpm, 4 bar
2000 rpm, 2 bar

1500 rpm, 2.62 bar
2000 rpm, 6 bar
3000 rpm, 8 bar
1500 rpm, 8 bar
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Oxygen Content (Mass-%)
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NOx decreases with increasing fuel alcohol and oxygen content

Impact of ethanol and butanol as oxygenates on SIDI engine efficiency and emissions using steady-state and transient test procedures




Speciated Hydrocarbons (from FTIR)
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1500 rpm, 2.62 bar BMEP
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Formaldehyde Emissions

500

Typical standard deviation less than 14 mg/kWhr
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Operating Points
2000 rpm, 2 bar
1500 rpm, 2.62 bar
3000 rpm, 4 bar
2000 rpm, 6 bar
3000 rpm, 8 bar
1500 rpm, 8 bar
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HCHO Emissions (mg/kWh)
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Increased formaldehye with iso-butanol blends, but not with ethanol blends
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Acetaldehyde Emissions
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MeCHO Emissions (mg/kWh)

Typical standard deviation less than 32 mg/kWhr

Operating Points

- o, e’

Oxygen content (Mass-%)

2000 rpm, 2 bar
1500 rpm, 2.62 bar
3000 rpm, 4 bar
3000 rpm, 8 bar
2000 rpm, 6 bar
1500 rpm, 8 bar

Increased acetaldehye with both ethanol and iso-butanol blends
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Engine Hardware-In-Loop Concept

Autonomie
Virtual Vehicle

Throttle

Speed

E Gasoline |
------------------ . E50
i 1so-But83 |

Dynamometer

Emissions sampling
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2005 Opel Vectra NEDC System Validation
2.2 L Ecotec DI Cold/hot start
Automatic (5-sp.)

Cycle Fuel Consumption,
Emissions Mass,
Species Behavior
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Experimental Methods: Engine HIL Testing
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Fuel Consumption Emissions
4 Vehicle Engine HIL h 4 Euro 4 Engine HIL )
ECE-15 11.3 12.4 . NO >0.1 0.02 +0.01
Gasoline X
EUDC 6.1 6.5 Validation CcoO >1 0.7+0.2
NEDC 8.0 8.7 HC > 0.068 0.03+£0.01
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Cycle Fuel and Energy Consumption

Vol. Fuel Consumption (1/100 km)
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Hot-start cycles, integrated fuel flow
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Total Cycle Emissions Mass
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NEDC, cold-start, post-TWC emissions
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Formaldehyde Emissions: Hot-Start, Pre-TWC

Gasoline —E50 —iso-But83
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1%t urban cycle of NEDC, hot-start, pre-TWC emissions
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Formaldehyde Emissions: Cold-Start, Post-TWC
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Acetaldehyde Emissions: Hot-Start, Pre-TWC

Gasoline —E50 —iso-But83

w
o
o

250

200

150

100

MeCHO Emissions (ppm)

(&)
o

60 90 120 150 180
ECE-15 Cycle Time (s)

1%t urban cycle of NEDC, hot-start, pre-TWC emissions

. (", Impact of ethanol and butanol as oxygenates on SIDI engine efficiency and emissions using steady-state and transient test procedures

17



Acetaldehyde Emissions: Cold-Start, Post-TWC
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Conclusions & Future Opportunities

Both ethanol and iso-butanol blends reduced cycle mass emissions of NOx and CO,
and yield comparable cycle energy consumption.

= Blends of gasoline and iso-butanol increase both acetaldehyde and formaldehyde
emissions, while ethanol-gasoline blends increase acetaldehyde emissions, but not
significantly formaldehyde.

= Aldehyde emissions are eliminated in an active (warm) three-way catalyst:
cycle aldehyde emissions stem from initial cold-start phase.

= Improved cold-start engine operation with high-alcohol fuels (including
iso-butanol blends) is critical for meeting emissions targets

= Future exploration opportunities include particulate matter characterization from
alcohol fuels utilizing engine HIL.

. (", Impact of ethanol and butanol as oxygenates on SIDI engine efficiency and emissions using steady-state and transient test procedures
: 19



Impact of ethanol and butanol as oxygenates
on SIDI engine efficiency and emissions using
steady-state and transient test procedures

Thomas Wallner, Neeraj Shidore, Andrew Ickes
Argonne National Laboratory

16" Directions in Engine-Efficiency and Emissions Research (DEER) Conference
Detroit, Michigan September 27-30, 2010

* U.5. DEPARTMENT OF
(@’ ENERGY




