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• LNT catalysts are sensitive to sulfur poisoning
• Sulfates more stable than nitrates: 
SO2 + 1/2O2 + Pt + BaO ----> Pt + BaSO4

2NO + 3/2O2 + Pt + BaSO4 ----> Ba(NO3)2 + Pt + SO3

 Sulfation changes reaction distributions

• High-temperature DeS can damage catalyst
 Irreversible thermal aging: e.g., Pt sintering
 Fuel penalty cost of process

Choi, et al., Appl. Catal. B 77 (2007) 145. 

• LNTs (e.g., Pt/Ba/Al2O3) operate in cyclic mode 
 LEAN-phase storage:
2NO + 3/2O2 + Pt + BaO ----> Pt + Ba(NO3)2

 RICH-phase reduction:
5H2 + Pt + Ba(NO3)2 ----> N2 + 5H2O + Pt + BaO
 Internal spatial & temporal variations

●
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Motivation
• Need to minimize high-T DeS events

 Basic control commands DeS too often and too long

• WGS enables advanced control
 Cummins OBD Patent (US Patent App. 20080168824)
 Active on-board assessment of catalyst state
 Only DeS when & for as long as required

 Better efficiency (lower fuel penalty)
 Better durability (catalyst & engine last longer)

Intake Air

Turbo
Exhaust LNT 

Catalyst

Parks, Swartz, Huff, West. ORNL. 
DEER 2006, August 20-24, 2006, Detroit, MI
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Approach: Controlled Bench Reactor Experiments with 
Spatially & Temporally Resolved Gas Analyses

Model LNT Catalyst

● Substrate: 300-cpsi cordierite

● Washcoat: Pt/Ba/Al2O3

● No Oxygen-Storage Capacity 

(OSC) such as Ce

● Evaluated as a 3/4” x 3” core

Procedure
● Baseline: 0 g/L S

● Performance evaluation
Neutral; OSC; NSR

● 1st S dosing: 0.85 g/L S

● Performance evaluation
Neutral; OSC; NSR

● 2nd S dosing: <1.7 g/L S

● Performance evaluation
Neutral; OSC; NSR

● Post mortem analysis
DRIFTS
Micro Reactor

In Situ Intra-Channel Speciation

SpaciMS

0 76L (mm)Cat-In

Sampling
Capillary

Cat-Out
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 WGS converts CO to H2 via: CO + H2O → H2 + CO2

 Lean-phase composition dictates CO reaction possibilities
 NSR: WGSR vs. OSC vs. LNT regeneration
 OSC: WGSR vs. OSC
 Neutral: WGSR only

 Fast Cycling (60:5-s lean:rich cycling)
 Temperature: 325°C

Systematically Vary WGS Competition for CO Reductant 

RICH (5s) LEAN (60s)

CO H2O NO O2 H2O

NSR 2% 5% 300ppm 10% 5%

OSC 2% 5% 0 10% 5%

Neutral 2% 5% 0 0 5%
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Baseline (0 gS / Lcat):
 NSR in front ½

 Back ½ unused

1st Sulfation (0.85 gS / Lcat):
 Front ¼ inactive

 NSR in back ¾

2nd Sulfation (<1.7 gS / Lcat):
 Front ½ inactive

 NSR in back 1/2

Sulfation Progressively Poisons NSR in Plug-Like Fashion
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 OSC due to Pt redox
 No Ce or support OSC

 ~ active Pt area

 OSC ~ uniform along catalyst
 i.e., uniform Pt distribution

 Minor sulfation impact on OSC
 ~3-17% loss max
 minor OSC on Ba?

 OSC active in sulfated zone
 Pt remains S free cf. poisoned NSR!

 Can change input to NSR zone

Sulfation Has Little Impact on “OSC”

OSC Cycling

“OSC”: Pt Area

~17% Loss max

gS/Lcat 1st Q. 2nd Q. 3rd Q. 4th Q.

0 NSR unused

0.85 Inactive degraded

<1.7

Qualitative Pictorial Representation of NSR Activity

●



12

• Background & Motivation

• Experimental Approach

• Sulfation Results
 NSR: NOx Storage & Reduction
 OSC: Oxygen Storage Capacity
 WGS: Water Gas Shift

• Global Conceptual Model

• Conclusions

Outline



13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.25 0.50 0.75 1.00

Relative Axial Catalyst Location (\)

H
2 C

on
ce

nt
ra

tio
n 

(%
)

Baseline

0.85 gS / L

< 1.7 gS / L

Baseline (0 gS / Lcat):
 WGS throughout

1st Sulfation (0.85 gS / Lcat):
 Front ½ : “Max” degradation 

 ~90-95% loss from Baseline

 WGS in back ½

2nd Sulfation (<1.7 gS / Lcat):
 Front 3/4 : “Max” degradation 

 WGS in back ¼ 

WGS S-front leads NSR S-front
 by ~ ¼ catalyst

WGS inactive upstream of NSR

WGS more sensitive to S than NSR

WGS Very Sensitive to Sulfur Degradation

Neutral Cycling

WGS

~95% Loss
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Global Model of Distributed S Impact on NSR, WGS & OSC

• Fully active in S-free zone

• Initial Sulfation:
• WGS very sensitive to S - probably due 

to changes in Pt-support interface 
structure

• NSR insensitive due to spillover, 
surface diffusion and NO2,gas accessing 
S-free Ba in field

• Progressive Sulfation:
• Further incremental WGS degradation 

to max 
• Progressive NSR degradation as field 

Ba is sulfated
• Ultimate NSR poisoning
• Minor OSC degradation
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Conclusions

• WGS occurs on Ba LNT catalysts (not just Ce-containing catalysts)

• Each LNT function has a different response to sulfation
− WGS: very sensitive to initial S
− NSR: Progressively degraded and poisoned
− OSC: Minor degradation

• The S distribution is different w.r.t. each LNT function 

• Conceptual model of distributed S impact on different LNT functions

• So what:
– Improved understanding of LNT sulfation
– Enable better models and catalyst system design (device size/capacity)
– Enable improved OBD & control (cf. Cummins Control Patent)
– Better emissions control, efficiency & durability
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How does
Sulfur 

Degrade WGS?
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Oxygen Mitigates Sulfur Degradation of WGS

OSC enhances WGS in Sulfated states

 ~5-10% gain vs. Neutral

 Little recovery vs. ~95% loss w/ Sulfation

O2 readily displaces S from Pt

 Sgas adsorbs on Pt during rich
 Based on DRIFTS measurements

 Fridell et al., Topics in Catal. V16/17, 133, 2001

 Pt is S free in OSC fast-cycling conditions

 O2 improves WGS by desorbing S from Pt

S adsorption on Pt has minor impact on WGS degradation

Other non-Pt-S route accounts for primary WGS S-degradation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00 0.25 0.50 0.75 1.00
Relative Axial Catalyst Location (\)

H
2 C

on
ce

nt
ra

tio
n 

(%
)

0.85 gS / L, OSC

0.85 gS / L, Neutral

<1.7 gS / L, OSC

<1.7 gS / L, Neutral

WGS

OSC & Neutral Cycling

●



21

Does S Degrade WGS by Changing Pt Electronic Structure?

S doesn’t change Pt-CO affinity
 cf. flat CO peak position

 Pt electronic density ~ constant

Pt sites are available 
 cf. flat CO peak area

 consistent w/ other observations 
showing that Pt is available
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Maybe initial S is detrimental to Pt-support\Ba interface
 Not yet verified for Pt\Ba\Al2O3 catalyst

 But,…Pt\Ce extensively studied for WGS & Reverse WGS

 &…common theme is importance of metal-support interface & activation on Pt

●
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S May Concentrate or Minute S is Detrimental 
to Interface Structure Necessary for WGSR

Nonlinear S impact on WGS 
Small initial  S dose has major 
impact on WGS (Fresh vs. 4th Q)
 4th Q has significant NOx capacity

S has significant but limited impact
 i.e., non-zero asymptote0%
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SCO2
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WGSR Activity, 300 C

Increasing S

Sakamoto et al., J of Catal. 238, 361, 2006

Surface N Surface S

Different N & S deposition
 N goes through Pt
 N concentrated around Pt

 S goes down everywhere

 Lean will oxidize S on Pt
 Likely deposited close to Pt

 May concentrated S around Pt

Goguet Model of WGS 
Carbon Poisoning

(Goguet et al., J. Phys. Chem. B 108, 20240, 2004)
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C forms at Pt

C island grows around Pt

Proximal C impacts WGS

No impact of distal C

Looks like S impact

We don’t yet know……Further fundamental research needed●
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2nd Sulfation (>1.7 gS / Lcat):
 Front ½ inactive

 NSR in back 1/2

Sulfation Progressively Poisons NSR in Plug-Like Fashion
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 OSC ~ uniform along catalyst
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 Minor sulfation impact on OSC
 ~3-17% loss max
 minor OSC on Ba?

 OSC active in sulfated zone
 Pt remains S free cf. poisoned NSR!

Sulfation Has Little Impact on “OSC”
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