An Experimental Investigation of Low Octane Gasoline in Diesel Engines

Stephen Ciatti and Swaminathan Subramanian
Center for Transportation Research
DEER 2010
Dearborn, MI
September 29, 2010

Work funded by DOE Office of Vehicle Technologies—Gurpreet Singh
Objectives

- The concept of using low-octane gasoline fuel to achieve a dictated premixed combustion in a diesel engine
 - Simultaneous reduction soot and NOx
 - Fuel/(Air+EGR) will be premixed, but not well mixed
- Maintain relatively high power densities (10 to 12 bar BMEP) while retaining high efficiency and low emissions
- To study the mixture formation effects through early pilot or early pilot and pre injections followed by a main injection schemes in gasoline LTC.
- Control combustion phasing by utilizing in-cylinder controls and study the influence of EGR, boost pressure and injection pressure on gasoline operated diesel engine in LTC mode
Conventional Combustion Process

SI – Homogeneous Mixture, No soot; HC, CO, (NO) – Emissions; Throttling losses

CI – Diffusion combustion, Fuel Efficient; High Smoke and NOx

Suction stroke

Compression stroke

Ignition

CR 9:1

Spark Ignited Combustion

CR 17:1

Compression Ignited Combustion
HCCI Vs LTC

Homogeneous Mixture

Well premixed fuel-air mixture

CR 17:1

Compression

HCCI

Compression Ignited Combustion

LTC

CR 17:1

Compression

Compression Ignited Combustion

Mixture

Partially premixed but not well mixed fuel-air mixture
Why is LTC an attractive solution to efficiency and emissions challenges?

Ref. SAE 2003-01-1789, Takaaki Kitamura et.al
LTC Approach

+
• Lean Mixtures
• Fuel Flexibility
• Low NOx and Soot

?
• Mixture formation difficulties
• High HC and CO levels
• Combustion control Problems

- This study explored the use of low octane/high volatility fuel
 - Increase ignition delay
 - Limit/eliminate wall and piston fuel wetting

- Gasoline-like fuels with low cetane/high volatility

- Lubricity additive to insure operation of diesel injection equipment

- Use fluid mechanics to control combustion phasing and engine load
Key Factors

Auto-ignition

Pressure & Temperature (air preheating, Turbo charging, EGR & compression ratio)

Physical Properties

Mixture Preparation

Low Temperature Combustion

Chemical Properties

Octane rating, cetane rating (Fuels & Additives)

Inj. Timing, pressure & no of injections
Engine Specifications and Tested Fuels properties

Engine Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>#2 diesel</th>
<th>Low-octane gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression ratio</td>
<td>17.8:1</td>
<td></td>
</tr>
<tr>
<td>Bore (mm)</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Stroke (mm)</td>
<td>90.4</td>
<td></td>
</tr>
<tr>
<td>Connecting rod length (mm)</td>
<td>145.4</td>
<td></td>
</tr>
<tr>
<td>Number of valves</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Injector</td>
<td>7 holes, 0.15-mm diameter</td>
<td></td>
</tr>
</tbody>
</table>

Properties of the Two Tested Fuels

<table>
<thead>
<tr>
<th>Property</th>
<th>#2 diesel</th>
<th>Low-octane gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>0.8452</td>
<td>0.7512</td>
</tr>
<tr>
<td>Low heating value (MJ/kg)</td>
<td>42.9</td>
<td>42.5</td>
</tr>
<tr>
<td>Initial boiling point (°C)</td>
<td>180</td>
<td>86.8</td>
</tr>
<tr>
<td>T10 (°C)</td>
<td>204</td>
<td>137.8</td>
</tr>
<tr>
<td>T50 (°C)</td>
<td>255</td>
<td>197.8</td>
</tr>
<tr>
<td>T90 (°C)</td>
<td>316</td>
<td>225.1</td>
</tr>
<tr>
<td>Cetane Index</td>
<td>46.2</td>
<td>25.0</td>
</tr>
</tbody>
</table>

G.M 1.9 L; 110 kW @ 4500 rpm - designed to run #2 diesel; Bosch II nd generation common rail injection system

Experimental Setup
Effect on BSFC and BSNOx emissions

Standard gasoline operation in SI mode was referred from

Emissions behavior (NOx and HC)

- **NOx emissions (g/kW-hr)**
 - Gasoline (LTC)
 - Diesel
 - Gasoline (SI)

- **HC emissions (g/kW-hr)**
 - Gasoline (LTC)
 - Diesel
 - Gasoline (SI)
Split Injection Strategies in LTC gasoline operation

FIRST STRATEGY (GAS-I):
First Injection - (-40°CA to -140°CA) (Partially premixed charge was prepared through this first injection)

Second injection - (0°CA) around TDC (heat release rate was maintained through this second injection)
Injection pressure - 600 bar to 900 bar (high injection pressures at higher load conditions)

SECOND STRATEGY (GAS-II):
An equal split of two early injections were employed.

First injection - (-70°CA); Second injection - (-25°CA).
Injection pressure - 600 bar.

This strategy had issues of severe knocking and hunting at 5, 8 and 12 bar BMEP conditions.

THIRD STRATEGY (GAS-III):
This strategy was nothing but a refinement of the first strategy.

Very early single injection scheme (- 95°CA) – 2 bar BMEP

Equal split of an early injection and a main injection scheme – 5 bar and 8 bar BMEP conditions
Early injection - (- 60°CA to -80°CA); Main injection – Closely after TDC.
Injection pressure - 600 bar
LTC Split Injection Strategies - Emissions

NOx

- Diesel
- GAS-I
- GAS-II
- GAS-III

HC

- Diesel
- GAS-I
- GAS-II
- GAS-III
Gasoline in LTC mode 1500 RPM and 2 bar BMEP

Emissions (g/kW/hr):
Diesel: 47% EGR : NOx = 0.24, HC = 0.41, CO = 0.172

1500 RPM Around 2 bar BMEP

HRR (J/°CA)

Crank Angle (CA)

260 280 300 320 340 360 380 400 420
Gasoline in LTC mode 1500 RPM and 2 bar BMEP

Emissions (g/kW/hr):
Diesel: 47% EGR : NOx = 0.24, HC = 0.41, CO = 0.172
Gas - I: No EGR : NOx = 2.81, HC = 9.42, CO = 68.8

1500 RPM
Arrround 2 bar BMEP

84 RON Gasoline
CA 50 = 8°C
EGR = 0

Inj. Pre – 600 bar
~Equal split
Gasoline in LTC mode 1500 RPM and 2 bar BMEP

Emissions (g/kW/hr):
- Diesel: 47% EGR : NOx = 0.24, HC = 0.41, CO = 0.172
- Gas - I: No EGR : NOx = 2.81, HC = 9.42, CO = 68.8
- Gas - II: No EGR : NOx = 1.27, HC = 16.4, CO = 78.3

1500 RPM
Around 2 bar BMEP

Injection Pressure - 600 bar
~Equal split

84 RON Gasoline
CA 50 = 8°C
EGR = 0
Gasoline in LTC mode 1500 RPM and 2 bar BMEP

Emissions (g/kW/hr):
- Diesel: 47% EGR: NOx = 0.24, HC = 0.41, CO = 0.172
- Gas - I: No EGR: NOx = 2.81, HC = 9.42, CO = 68.8
- Gas - II: No EGR: NOx = 1.27, HC = 16.4, CO = 78.3
- Gas - III: No EGR: NOx = 0.14, HC = 19.9, CO = 102.14

1500 RPM Around 2 bar BMEP

84 RON Gasoline
CA 50 = 8°CA
EGR = 0

Inj. Pre – 600 bar
Highest EGR level achieved with stable combustion (COV<5%) @ 2000 RPM and 5 bar BMEP
Highest EGR level achieved with stable combustion (COV<5%) @ 2000 RPM and 5 bar BMEP
Highest EGR level achieved with stable combustion (COV<5%) @ 2000 RPM and 5 bar BMEP
Higher speed/load conditions - 2500 RPM and 8 bar BMEP

Emissions (g/kW/hr):
Diesel (6.5% EGR): NOx = 2.48, HC = 0.08, CO = 0.26

2500 RPM
8 bar BMEP

HRR (J/°CA)

Crank Angle (CA)
Higher speed/load conditions – 2500 RPM and 8 bar BMEP

Emissions (g/kW/hr):
- Diesel (6.5% EGR): NOx = 2.48, HC = 0.08, CO = 0.26
- Gas - I (16% EGR): NOx = 0.89, HC = 0.39, CO = 1.43

2500 RPM
8 bar BMEP

Gas - 84 RON Gasoline

Inj. Pre – 900 bar
~ 32 % split
Higher speed/load conditions - 2500 RPM and 8 bar BMEP

Emissions (g/kW/hr):
- Diesel (6.5% EGR): NOx = 2.48, HC = 0.08, CO = 0.26
- Gas - I (16% EGR): NOx = 0.89, HC = 0.39, CO = 1.43
- Gas - III (18% EGR): NOx = 0.53, HC = 0.66, CO = 5.51

HRR (J/°CA)

Crank Angle (CA)

Inj. Pre – 600 bar
Equal split

2500 RPM
8 bar BMEP

Gas - 84 RON Gasoline
2750 RPM and 12 bar BMEP - significant reductions in NOx with very low HC penalty

Emissions (g/kW/hr):
- Diesel (2% EGR): NOx = 4.6, HC = 0.076, CO = 0.15
- 84 RON Gas (14% EGR): NOx = 1, HC = 0.13, CO = 0.89
2750 RPM and 12 bar BMEP - significant reductions in NOx with very low HC penalty

Emissions (g/kW/hr):
- Diesel (2% EGR): NOx = 4.6, HC = 0.076, CO = 0.15
- 84 RON Gas (14% EGR): NOx = 1, HC = 0.13, CO = 0.89

Inj. Pressure – 900 bar

37% of the total fuel

2750 RPM 12 bar BMEP

84 RON Gasoline
CA 50 = 10°CA
EGR = 14%
Design of Experiments Study

Design of experiment (D.O.E) matrix

<table>
<thead>
<tr>
<th>Exp No</th>
<th>EGR</th>
<th>Boost</th>
<th>Injection Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>2</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>3</td>
<td>(-)</td>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>4</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>5</td>
<td>(-)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>6</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>7</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>8</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

Yates Algorithm was used

George E.P Box, William G Hunter and J. Stuart Hunter, Statistics For Experimeners- An Introduction to Design, Data Analysis and Model Building, John Wiley & Sons, Inc, USA.

D.O.E matrix parameter values at 8 bar BMEP

<table>
<thead>
<tr>
<th></th>
<th>EGR (%)</th>
<th>Boost (bar)</th>
<th>Injection Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)</td>
<td>21</td>
<td>0.7</td>
<td>1000</td>
</tr>
<tr>
<td>(-)</td>
<td>13</td>
<td>0.5</td>
<td>500</td>
</tr>
</tbody>
</table>

Average values from DOE analysis at a BMEP of 8 bar

<table>
<thead>
<tr>
<th>NOx g/kW-hr</th>
<th>HC g/kW-hr</th>
<th>CO g/kW-hr</th>
<th>SFC g/kW/hr</th>
<th>Noise db</th>
<th>COV of IMEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.51</td>
<td>1.26</td>
<td>5.36</td>
<td>238.7</td>
<td>93.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Design of Experiments Study done @ 2500 RPM - 8 bar BMEP with EGR, P_inj and Boost as controls

NOx

% difference from the average

1 - EGR
2 - Boost
3 - EGR & Boost
4 - Inj. Pressure
5 - EGR & Inj. Pressure
6 - Boost & Inj. Pressure
7 - EGR, Boost & Inj. Pre

HC

% difference from the average

SFC

% difference from the average

COV of IMEP

% difference from the average
Conclusions

- Power density needs are addressed in gasoline LTC operation - SOC is controlled by means of proper split injection strategy.
- Higher HC emissions than conventional diesel mode, but lower than well-premixed (HCCI) conditions.
- Combination of low-octane fuel with proper fuel distribution and EGR is required to dictate this partially premixed LTC combustion.
- NOx Emissions were reduced through the following injection schemes at different loads.
 - 2 bar BMEP – Single early injection (95°CA bTDC).
 - 5 bar BMEP – Early (60°CA bTDC) and main at 2°CA aTDC.
 - 8 bar BMEP – Early (75°CA bTDC) and main at 2°CA aTDC.
 - 12 bar BMEP - Early (135°CA bTDC) and main at 2°CA bTDC.
- The operating window is limited by the self-ignition quality of the fuel as well as compression ratio of the engine, so low-octane fuels with lower compression ratios could provide a reasonable solution.
- High EGR and high injection pressure with low boost pressure would be the optimum for emissions, fuel efficiency and COV of IMEP.
Thank you
<table>
<thead>
<tr>
<th>BMEP (bar)</th>
<th>LTC Gasoline EGR rates (%)</th>
<th>Conventional Diesel EGR rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>6.5</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>2</td>
</tr>
</tbody>
</table>
Combustion parameters

<table>
<thead>
<tr>
<th>BMEP (bar)</th>
<th>Peak Pressure (bar)</th>
<th>Peak Pressure location (CA)</th>
<th>Max. Rate of Pressure Rise (MRPR) bar</th>
<th>MRPR Location (CA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diesel</td>
<td>Gas</td>
<td>Diesel</td>
<td>Gas</td>
</tr>
<tr>
<td>2</td>
<td>31.1</td>
<td>49.3</td>
<td>365</td>
<td>364</td>
</tr>
<tr>
<td>2 *</td>
<td></td>
<td></td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>2 **</td>
<td></td>
<td></td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48.5</td>
<td>58.1</td>
<td>373</td>
<td>367</td>
</tr>
<tr>
<td>5 **</td>
<td></td>
<td></td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>54.4</td>
<td>81.5</td>
<td>368</td>
<td>363</td>
</tr>
<tr>
<td>8 **</td>
<td></td>
<td></td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>80.0</td>
<td>84.7</td>
<td>374</td>
<td>362</td>
</tr>
</tbody>
</table>
Combustion parameters

<table>
<thead>
<tr>
<th>BMEP (bar)</th>
<th>Peak Pressure (bar)</th>
<th>peak Pressure location (CA)</th>
<th>Max. Rate of Pressure Rise (MRPR) bar</th>
<th>MRPR Location (CA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>Gas</td>
<td>Diesel</td>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>31.1</td>
<td>49.3</td>
<td>365</td>
<td>364</td>
</tr>
<tr>
<td>2*</td>
<td>-</td>
<td>51.8</td>
<td>-</td>
<td>367</td>
</tr>
<tr>
<td>2**</td>
<td>-</td>
<td>62.6</td>
<td>-</td>
<td>370</td>
</tr>
<tr>
<td>5</td>
<td>48.5</td>
<td>58.1</td>
<td>373</td>
<td>367</td>
</tr>
<tr>
<td>5**</td>
<td>-</td>
<td>63.1</td>
<td>-</td>
<td>367</td>
</tr>
<tr>
<td>8</td>
<td>54.4</td>
<td>81.5</td>
<td>368</td>
<td>363</td>
</tr>
<tr>
<td>8**</td>
<td>-</td>
<td>94.1</td>
<td>-</td>
<td>363</td>
</tr>
<tr>
<td>12</td>
<td>80.0</td>
<td>84.7</td>
<td>374</td>
<td>362</td>
</tr>
</tbody>
</table>