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LLNL R&D supports simulation of advanced
engine combustion regimes
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Novel chemical kinetic solvers
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Recently Developed Fuel/Surrogate Models

Diesel and Gasoline
Surrogates

Branched Alkanes



We have developed Chemical Kinetic Mechanism
for n-alkanes and 2-methylakanes up to C,,

Includes all n-alkanes upto
C, and 2-methylalkanes up
to C,,, which covers the entire
distillation range for gasoline
and diesel fuels

Validated against
experimental data in shock
tubes, flames, and jet stirred
reactors.

Complete Mechanism

7,200 species
31,400 reactions

S.M. Sarathy, C.K. Westbrook, M. Mehl, W.J. Pitz, et al., Combustion and Flame, 2011
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Branching reduces propensity for ignition

C,Hyg Research Octane  Derived CgHig Research Octane  perived
Number! Cetane Number? Number'  cetane Number?
/\/\/\ /\/\/\/
0 53.8 -19.0 57.6
n-heptanc n-octane
/LN 42.4 43.5 )\/\/\ 21.7 52.6
2-methylhexane 2-methylheptane
3-mecthylhexane 3-methylheptane
55.5 ?
U
2,4-dimethylpentane 2,5-dimethylhexane
1. C. Mgrley Comb. Sci. Tech. 55, 15 (1987)
Lawrence Livermore National Laboratory 2. Ratcliff et al. NREL (2010) UL-
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Reactivity increases with chain length; 2-methylalkanes are less
reactive than n-alkanes of the same chain length.

Ignition Delay Time (s)

¢ = 3, 20 atm (Diesel Ignition Conditions)
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Low Temperature
(700 K) Chain
Branching
Reaction
Pathways
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Experimental validation is underway with
a number of collaborators

*Rapid Compression Machine Ignition

NUI Galway, Ireland

*Counterflow Diffusion Flames

University of Toronto
UC San Diego

*Shock Tube Ignition Delay
RPI, New York

«Jet Stirred Reactor
CNRS Orleans, France
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Shock Tube and RCM 2-methylheptane experiments
show good agreement with our mechanism
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We are also developing and validating l |
mechanisms for complex C; Aromatics

p-xylene  o-xylene

o-Xylene
ST 10 atm , ®=1 ’
’ RCM 14-19 atm , ®=1
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Temperature [K]

RCM comparisons: Lines are calculations, data are from H.-P.S. Shen, M.A. A. Roubaud, O. Lemaire, R. Minetti, and L.R. Sochet,
Oehlschlaeger, Combustion and Flame 2009, 156, 10563—1062 Comb. Flame 2000, 123, 561-571

The model correctly reproduces the relative reactivity in terms of ignition of
different C8 aromatics
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We have built a gasoline surrogate that is
predictive of RCM ignition delay data

1000

A UCON RCM 20bar PHI=1.0
A UCON RCM 20bar PHI=1.0
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The research gasoline
used at Sandia in previous
and current HCCI
experiments was tested in
the UCON Rapid
Compression Machine.

The experimental ignition
times are compared with
simulations obtained using
the gasoline surrogate
proposed by LLNL
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We have complete mechanisms for the 5 principle
components of soybean and rapeseed biodiesels

0O

—{ trlglycerlde
‘>_/ \\ + 3CH30H

: \methanol

e L

Fatty acid methyl esters (FAMES):

Methyl Palmitate (C16:0)

This year

methyl ester glycerol
70
00 H Soybean
50 - aR q
- 40 - apesee
°" 30 -
20 A
10 A
Clme m BN o

Methyl Stearate (C18:0)

Last year

/\/\/\/\/\/\/\/\)Lo/

Methyl Oleate (C18:1)

e~

C16:0 C18:0 C18:1 C18:2

C18:3

Methyl Linoleate (C18:2)

This year

/\/\/VW

Methyl Linolenate (C18:3)

vaw

Model with all 5 components now published and available: Westbrook, Naik, Herbinet, Pitz,
Mehl, Sarathy and Curran, "Detailed chemical kinetic reaction mechanisms for soy and
rapeseed biodiesel fuels," Combustion and Flame, 2011.
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Supporting interest in Bio-butanol as an alternative fuel, we have
developed and validated mechanisms for several butanol isomers

1 ] Rapid compression machine
on tert-butanol
)i iso-butanol )<OH
® 01 +
() |
= .
o
80 01 + 2-butanol /\/\OH
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Symbols:
experimental data
Sung et al.,

AIAA paper, 2011

B ;
Rapid compression machine
University of Connecticut

Simulations including RCM
volume traces better predict
experimental ignition delay
times.
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We continue to build and validate kinetic mechanisms
for both conventional and alternative fuels
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Mechanisms are available on LLNL website and by email

http://www-pls.lInl.gov/?url=science_and_technology-chemistry-combustion

Ethanal
Dimethyl Ether

CH4, C2H4, C2H6, C3HE,
and nC4H10

CH4, C2H4, C2H6, C3HG,
C3HE, and MOy

C8-C16 n-alkanes
Cyclohexrane
Methyloyclohexane

Methyl Butanoate and
Methyl Formate

Methyl Decanoate

Methyl Decencates
Biodiesel Surrogates
Dirnethyl Carbonate

Heptane, Detailed
Mechanism

Heptane, Reduced
Mechanism

iso-Octane

Primary Reference Fuels:
iso-Octane / n-Heptane
Mixtures

2,2,4,4,6,8,8-
Heptamethylnonane

Organophosphorus
Compounds under
Incineration Conditions

Organophosphorus
Compounds in Propane
Flarmes

Organophosphorus

Lawrence Livermore National Laboratory
LLNL-PRES-427539

Combustion Chemistry

Go Directly to Mechanisms...

The central feature of the Combustion Chemistry project at LLML is our development, validation, and
application of detailed chemical kinetic reaction mechanisms for the combustion of hydrocarbon and
other types of chemical fuels. For the past 30 years, our group has built hydrocarbon mechanisms for
fuels from hydrogen and methane through much larger fuels including heptanes and octanes, Other
classes of fuels for which models have been developed include flame suppressants such as halons and
organophosphates, and air pollutants such as soot and oxides of nitrogen and sulfur,

Reaction mechanisms have been tested and wvalidated extensively through comparisons between
computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames,
rapid compression machines, flow reactaors, stirred reactors) and from practical systems (e.q., diesel
engines, spark-ignition engines, homogeneous charge, compression ignition (HCCID engines). We have
used these kinetic models to examine a wide range of combustion systems.,

Gasoline Engine
(Spark Ignition)

Diesel Engine
(Compression Ignition)

HCCl Engine

(Homogeneous Charge

spark plug fuel injector Compression Ignition)

Hot-Flame Region: Hot-Flame Region:
NOx NOx & Soot

Low-Temperature Combustion:
Ultra-Low Emissions (< 1900K)
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Large chemical kinetic mechanisms can be difficult to solve numerically,
we develop methods to enable detailed kinetics in engine simulations

Species composition

Explicit Update

(lower cpu/step)
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Improved Numerics

1024 species - 128 threads/block
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CFD+multi-zone development

Parallel CFD and MZ-chemistrL
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Graphical Processing Units (GPUs) can bring
supercomputing to the desktop workstation

= 1, Teraflop for $500

= 480 parallel processors

D )
Vo |

= Codes must be redesigned
to take advantage of
architecture

e

) Nvidia GeForce 480

1400

NVIDIA GPU 32-bit (GeForce) —e—
NVIDIA GPU 64-bit (Tesla) -
1200 Intel CPU 32-bit —#&—

Intel CPU 64-bit -

= Massively parallel
computing on the desktop

1000 ¢

= Fortran/C++ Compilers
designed for GPUs now
available

Data from l_\lVIDIA’s, “CUDA C_Programming Guide Version 3.1,” 2010.
Lawrence Livermore National Laboratory I-
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LLNL is a center for research on using GPU
architectures for large-scale scientific simulations

AMAX GPU WORKSTATIONS

)

Tesla20-Seriec BRaady

* LLNL Edge Cluster Off-the-shelf Desktop
GPUs: 412 GPUs: 1
Type: Tesla M2050 Type: Tesla C2050
Cores: 185,000 GPU Cores: 448 GPU
2,500 CPU 8 CPU
Tflop/s: 212 (64-bit) Tflop/s: 0.5 (64-bit)
Price: 4-5M$ Price: 5.7 K$

Lawrence Livermore National Laboratory UL-
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Constant volume ignition delay is the basis
for numerical chemistry development

3500
3000
£ 2500 F |gnition Delay
E 2000 € >
% g
~ 1500
/ 1000 /J
To= 1000 K ol
P =20 bar 0 02 04 06 08 1 12 14 16 18 2
0 Time [ms]
%
Constant Volume Reactor Temperature Time History

The Constant Volume Reactor is the basic unit
for chemistry in multidimensional CFD codes
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We are doing ignition delay calculations with large
mechanisms to determine best practices for GPUs

Iso-octane (857 species)
Simulation Time 30

CPU (LU)
25 |
W 20 |
© GPuU (LU)
E
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° GPU(INV)
S 10} |
Il df/dt
Shorter bars 5 1 build J
mean faster — iﬁg j
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Direct matrix inversion is the most effective solver
strategy on the GPU, but performs poorly on the CPU

50

45 |
40 |
35 |
30 |

25

Wall clock time [s]
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5 |

Iso-octane (857 specie7)’\
B df/dt
4" build J
Fastest: | I factor J
GPU Direct B solve J
Inversion | I other

CPU (LU)

\ Slowest:
CPU Direct

Inversion

N \/
GPUs can do many high repetitive calculations with little computational effort

CPUs get bogged down by these kinds of calculations
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We have achieved up to 11x speedup with GPU for
ignition delay with large mechanisms

Wall clock time [s]

Iso-octane (857 species)
300
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1 100
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. solve J
N other
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We have done extensive submodel development and testing to
enable large-scale parallel CFD for engine simulation

Robust Grid
Re-zoning in
Kiva-4mpi

[ Parallel Injection L Mesh Partitioning

Strategies

Lawrence Livermore National Laboratory UL-
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We completed a 5 year licensing agreement for the LLNL
Multi-zone Model with Convergent Science Inc. (CSl)

M, - ponal [~ #ast Charmistry Coming &

€ 3 C [ convergectd.com/fast-chemistry-co

CONVERGENT SCIENCE search = o

Home Products Sarvices Applications Suppart Abaut Contact News

Cabspaving Fast Chemistry Coming Soon

Announcemanss (4) Postet by admin on Decomber 2, 2010

Corvergert Sclence Licenses Lawrence Livermors Natlonal Laboratory Technology for P!
CFD Simulation
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CONVERGE from CSl is high
performance parallel CFD solver
widely used in US industry

LLNL has CONVERGE-MZ
licenses for complex 3D
problems on our large-scale
parallel computers

LLNL is working with CSl to
implement and test the
CONVERGE multi-zone model
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Future Work: We will explore strategies for improving
efficiency of CFD and chemistry simulations

methods
 Hybrid solver solutions Adaptive .
. . o aps Sampling
» Solver parallelization compatibility

« Reaction sort with submatrix direct inversion.
* New integration error control logic
» Increase GPU shared memory reuse
«  GPU particle motion/collision algorithms
= Improved parallel CFD with chemistry
» Multi-criteria multi-zone
« Spray parcel models
« Spray initialization

= Improved computational chemistry solvers
« Sparse solvers (CPU & GPU)
« More efficient data structures

Multi-zone
ODE
system

Solvers

Lawrence Livermore National Laboratory UL-
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Future work: extend applicability and
computational efficiency of analysis tools

Enable 3-D fluid mechanics
and detailed kinetics in
today’s desktop PCs

Contif?lrje to validate and develop
parallel CFD, multi-zone, and

ANN for highest fidelity in fluids
and chemistry

Lawrence Livermore National Laboratory UL-
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Summary: we are enhancing our analysis capabilities
and improving computational performance

, Accelerated Combustion
Parallel CFD+Multi-zone | v

(2887 species)

 dt/dt
0 build J
m— factor J
. solve J
I other

Speedup

[ Model Commercialization }
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