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Combustion model needed for advanced

combustion in engine concept development

Systems approach is needed

Integration with GT-Power
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PPC is challenging to model

A wide span of combustion modes in a load sweep
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The Stochastic Reactor Model (SRM)
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Mixing time [s]

The Stochastic Reactor Model (SRM)
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Mixing is modeled as a stochastic process: Particles are randomly selected
to interact with each other. Both temperature and chemical composition is exchanged.

The frequency of mixing events is determined by the turbulent mixing time t
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Chemistry

The SRM model makes use of detailed chemistry.
Three different mechanisms were evaluated:

e 33-species Tsurushima mechanism

e 200-species NICE mechanism

o 477-species Toluene Reference Fuel (TRF) mechanism

The 33-species mechanism was found to yield unrealistic
ignition timing, whereas the differences between the 200-
species mechanism and the 477-species mechanism were
negligible.

The 200-species NICE mechanism has been used for all
simulations in this presentation.
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Fuel injection

e Vaporized fuel is introduced as new particles in the SRM.
e These particles are mixed with the background gas (air and

EGR) according to the turbulent mixing time.
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Example: Vaporized cold fuel mixing with
background gas and igniting

Massfraction NO, CAD = 0, 1956 particle(s)
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PPC modeling with the SRM

Problem: While the SRM model presumes statistical homogeneity in the combustion
chamber, this assumption is not true for the PPC. At the point of ignition, much fuel is
still concentrated in a rich zone

Solution: Divide the background gas in the SRM into two distinct zones. Let the
injected fuel be introduced into one of the zones. Mix predominantly within each
zone to capture the effects of stratification.
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PPC modeling with the SRM

Number of particles

Temperature, species mass fraction, etc.

With the two-zone approach, each property of the gas is described by two
superimposed PDF:s.

The total mass of background gas to be allocated into the fuel-rich zone is a user parameter,
as is the scale factor for the amount of mixing between the zones.
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Two-zone PDF development

PDF for rich zone -
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Two-zone PDF development

PDF for rich zone -
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Two-zone PDF development
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Two-zone PDF development
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Fuel density distribution from CFD
calculations

CFD calculations support the notion that a portion of the fuel is found in a
localized rich zone for a significant amount of time after EOI. Zone
volumes for the different operating points were approximated based on
the Z distribution.

IMEP 12 bar ——

L

08 o f o\

ells with Z > 0.10

S T T U
06 ------------------- . -------------------- -------------------- ------------------- .
T W A
04 | ------------------- O — -------------------- -------------------- ------------------- g
T

o2l N

Normalized fraction of fuel mass located in ¢

01 L N N S \ — — -

Global Trucks Technology
Arne Andersson, DEER 2012 VOLVO



Turbulent mixing time from CFD
calculations

The mixing time is taken from CFD calculations for each respective
operating point. In order to model the mixing within the rich zone, tau
profiles conditioned on mixture fraction 0.06 to 0.08 were used.
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Mixing time [s]

Case 1 -IMEP 12 bar
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Mixing time [s]

Case 2 — IMEP 8 bar
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Case 3 - IMEP 26 bar

All relevant parameters 220407
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Sum up and conclusions

3D combustion CFD generate statistical input data for the 0D
combustion model

o With the right statistical parameters we can create a 0D
combustion model capable of PPC simulation

e A 2-zone stocastic approach is required to match CFD data

e The Stocastic approach enables the use of big enough
kinetic mechanisms

e The stocastic approach enables the combustion model
integration in GT-Power
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