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LLNL combustion program encompasses a range of
activities in simulations and experiments
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We continue to develop and validate chemical reaction
mechanisms for gasoline and Diesel components

" Validated approach and mechanism for = Development of chemical kinetic model

gasoline surrogate fuels for larger aromatics
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Surrogates are chemical reaction mechanisms that contain classes of
compounds representative of Diesel or Gasoline combustion

Example diesel fuel palette:

1-methylnaphthalene

1,2 A4-trimethylbenzene @(j

tetralin

Recent Mechanisms:

« 4-component gas surrogate
* m-xylene/n-dodecane

* n-propylbenzene/n-heptane
« 2-methylalkanes (up to C20)
» 3-methylalkanes (up to C20)

m n-alkanes

® branched alkanes

loalk
cYEOaKaNES — Current Development:

aromatics » a-methylnaphthalene
* methylcyclohexane
* di-methylalkanes

Thousands of species
Tens of thousands of reactions
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Mechanism development is tied closely to
validation with a wide range of experiments

» ldealized chemical reactors with/without simplified transport
phenomenon

Combustion Parameters
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Modeling of 3-methylheptane Ignition
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Modeling the effect of branching on ignition
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JSR 3-Methylheptane Results

Experiments performed at CNRS, Orleans (F. Karzenty, C. Togbe G. Dayma, P. Dagaut)
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Larger aromatics: Shock tube ignition of  n-butyl
benzene at high pressure

0.01
‘o =0.5
é d) n-butylbenzene
)
£ 0.001 -
>
©
D 30 atm
©
o
= Curves: NUIG-LLNL model
C
O Symbols: NUIG experiments
1E-05 . .

0.6 0.7 0.8 0.9 1.0 1.1
1000 K/ T

Experiments: Tobin,Yasunaga and Curran, NUIG, Ireland (Combust. Flame 2011)

Lawrence Livermore National Laboratory UL- 10

LLNL-PRES-582253




Mechanisms are available on LLNL website and by email

http://www-pls.linl.gov/?url=science _and_technology-chemistry-combustio
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Combustion Chemistry

Go Directly to Mechanisms...

The central feature of the Combustion Chemistry project at LLNL is our development, vali
and application of detailed chemical kinetic reaction mechanisms for the combustion of
hydrocarbon and other types of chemical fuels. For the past 30 years, our group has bu
hydrocarbon mechanisms for fuels from hydrogen and methane through much larger fug
including heptanes and octanes. Other classes of fuels for which models have been dg
include flame suppressants such as halons and organophosphates, and air pollutasfs s
soot and oxides of nitrogen and sulfur.

2-Methyl Alkanes

Reaction mechanisms have been tested and validated extensively thealigh comparisons be
computed results and measured data from laboratory experimepks (e.g., shock tubes, lamina
flames, rapid compression machines, flow reactors, stirred pedctors) and from practical systems
(e.qg., diesel engines, spark-ignition engines, homogenedls charge, compression ignition (HCCI)
engines). We have used these kinetic models to gxdmine a wide range of combustion systems.

Diesel Engine HCCl Engine
(Compression Ignition) (Homogeneous Charge
fuel injector Compression Ignition)

Gasoline Engine
(Spark Ignition

L -
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Challenge: new HECC modes require computationally expensive
models fully coupling detailed kinetics with CFD
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Detalled Chemistry

Mechanisms for large fuel

molecules contain +7000 species
(e.g. LLNL 2-methyl and 3-methyl-

alkane mechanisms)
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Approach: Collaborate with industry, academia and national labs in
the development of analysis tools leading to clean, efficient engines

Gain fundamental and practical insight into High Efficiency Clean
Combustion regimes through numerical simulations and experiments

Develop and apply numerical tools to simulate HECC by combining
multidimensional fluid mechanics with chemical kinetics

Reduce computational expense for HECC simulations

Democratize simulation: bring chemical kinetics-fluid mechanics
computational tools to the desktop PC
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For combustion chemistry, implicit solvers allow for

much larger time steps to resolve ignition
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Opportunities for 1000x speedup in computational
chemistry cost through applied mathematics

Perturbation
methods

Adaptive
Sampling

Sparse
Solvers
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Using the default stiff-ODE integrator options for large mechanisms
is computationally expensive even for single cell (WSR) ignition
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Wall clock time [s]

We have developed solvers that reduce chemistry
simulation time by orders of magnitude
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The LLNL CFD/multi-zone solves flow in XYZ space and
chemistry in temperature-chemistry space

Chemistry can be solved with 100s of reactors, independent of the CFD resolution
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The Combustion Simulation Group combines detailed
kinetics, CFD, and solvers for engine simulation
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This work is further enabled by LLNL large-scale
computing resources (multiple TFLOPs available to us)

Additive |

Additive 2

..........

5.88 mm 5.23 mm

[ (0.2314 in) ( (0.206 in) ( ).

Experiments by pait ICIO. =
(e.g. Sandia, Oak Ridge)

‘Wall clock tin

CPUICantera (dense lapack) ——
CPUICommercial chemistry solver
1t GPUICantera (cula - direct inverse)
CPUICantera (adaptive preconditioner)

CPUILLNL (AEC Feb 2012) ——

A Multizone from LLNL
Kinetics Solvers from (Flowers)
LLNL (McNenly)
Lawrence Livermore National Laboratory II- 20
LLNL-PRES-582253



Convergent Sciences Inc. licensed LLNL multi-zone model
for their CONVERGE engine CFD simulation software

= Converge is widely used in industry for engine

simulation
SCOTE Direct Injection Test Case .
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Multi-zone model in CONVERGE shows very good agreement
between spatial and temporal temperature evolution

Cells temp (K) -5 OA TDC
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500
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Similarly, CONVERGE predicted carbon monoxide
evolution compares well between multi-zone and every-cell

L . B

Cells CO

I 0.2
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0 °ATDC
| SAGE Map - | Map -
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Predictions are very consistent between CONVERGE
every-cell and multi-zone simulations

Heat Release Rate (J/degree]
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Converge multi-zone provides the same accuracy while
reducing the simulation time by a factor of 10
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We are doing a systematic study of using the Converge
multi-zone for investigating Early-DI PCCI

Sandia (Dec)
Isooctane data

Converge spray
models (RT/KH)

LLNL multi-zone and
AP solver

874 species ic8h18
mechanism

Closed cycle
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Fuel concentration is highest near bowl with some fuel

entering the ring crevice
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Fuel distribution in cylinder just before significant

conversion occurs
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CO is not fully converted away from the central core of

the combustion chamber

Crank = -80.0 CAD %

yCO
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CO2 shows regions of more complete combustion
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Temperatures exceed 1400K in the complete

combustion region
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OH production hindered by low local temperatures

Crank = -80.0 CAD %
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Full conversion of fuel occurs in the center of the
combustion chamber, partial reaction in “squish” region

Crank = 22.0 CAD
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Very good agreement on in-cylinder pressure without
tuning modeling parameters
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Tik)

mass fraction

Converge multi-zone predicted emissions compare very
well with experiment
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Adaptive preconditioned solver dramatically reduces
chemistry time for converge multi-zone

HCCI Engine Simulation
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We use OpenFOAM as our platform for model
development

™
open source ‘w5 ER
B AR
,\ 1‘ /1 Modular
OpenVFOAM
General CFD Engines
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Wall clock time [s]

We are incorporating advanced solvers into our Parallel
CFD multi-zone model and benchmarking performance
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Ongoing and Future Work

New chemical kinetic mechanisms
Large alkyl aromatics
larger n-alkanes (above C16)(important to get end of distillation curve)
Improved gasoline and Diesel surrogates

Improved detailed chemical kinetics solvers
Larger average timesteps per species
Adaptive preconditioning scheme for GPU
Extended error control schemes

CFD/Kinetics simulation tools
Integrator based remap
Reactor initialization estimator
Convergence and validation with HPC
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