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At low-load, UHC and CO emissions under LTC 

conditions are dominated by lean bulk gas mixture 

Measured UHC/CO distributions at 50° aTDC (Deep-UV LIF)
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The lean bulk gas mixture is mainly in the squish volume and upper-
central cylinder 
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Comparisons with simulations indicate that 

fuel-air mixing may not be adequately predicted  

Measurements
 

COC2 (partially­
burned) 

0 

0.5 

1 

0 

0.5 

1 

white isotherm = 1200 K green isotherm = 1500 K
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How sensitive are the simula­
tion results to: 
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Simulation
 



 

 

 

Mixture preparation has not been studied 

quantitatively in light-duty engines  

The  mixture preparation processes in light-duty engines is very 
different from the “free-jets” characteristic of heavy-duty engines: 

There are no reported quantitative measurements of the fuel-air 
equivalence ratio distributions in light-duty engines 
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Liquid Fuel 
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t Light-duty engines have strong wall interactions, including liquid phase 
impingement and re-direction of jet momentum by the piston surfaces 

t Swirl creates a strong cross-flow which, near TDC, is strongest at the jet 
stagnation region near the bowl lip 



 

 

 
 

 

  
   

  
 

 
  

 

Engine Facility and Experimental Set-up 


Measurements are made in a GM 1.9L 


optically accessible engine
 

t Piston geometry has production-like bowl and 
valve pockets 
t Top ring-land crevice approximately 3–4 times 

volume of production engine crevice 
t Gap-less compression rings reduce blowby 
t Recessed liner windows allow squish volume Laser 

sheetaccess @TDC
 
t Fluorescence collected through piston
 

Engine Geometry Injector specificatons 
Bore 82.0 mm Injector Bosch CRI2.2 
Stroke 90.4 mm Nozzle Type Mini Sac (0.23 mm3) 
Displ. Volume 0.477 L Holes

 7 

Geometric CR 16.7 Nozzle diameter 0.139 mm 
Squish Height 0.88 mm Included Angle 149° 

Hole geometry KS1.5/86 
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Engine Facility and Experimental Set-up 


Measurements are made in a GM 1.9L 


optically accessible engine
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Engine Geometry Injector specificatons 
Bore 82.0 mm Injector Bosch CRI2.2 
Stroke 90.4 mm Nozzle Type Mini Sac (0.23 mm3) 
Displ. Volume 0.477 L Holes
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Geometric CR 16.7 Nozzle diameter 0.139 mm 
Squish Height 0.88 mm Included Angle 149° 

Hole geometry KS1.5/86 
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Operating conditions 

Single injection, low temperature ‘PCI-like’ operation (10% O2)
 

Engine speed 1500 rpm 
Load 3 bar 

Intake Pressure 1.5 bar 

Swirl rato 1.5, 2.2, 3.5, 4.5 

Squish Height 0.88 mm 

Motored TDC density* 21.1 [kg/m3] 

Motored TDC temperature* 908 [K] 

Injected fuel quantty typically 8.8 mg (single injecton) 

Global Equivalence Rato† 0.4 

Injecton pressure 500, 860, 1220 bar 

Start-of-Injecton (SOI) -27.8, -23.4, -12.5°CA aTDC 

Injecton duraton ~ 5.4°CA (600 μs) 

* based on GT-Power modeling of the inducton and compression stroke 
†assumes a 10% O2 concentraton 



  

 

 

 

Fuel & Tracer Selection
 

• Diesel fuel unsuitable due to 
unknown photophysics 

• Toluene tracer (0.5%) in PRF25 

fluorescence-free base fuel
 
- Known photophysics (T, P 


dependency)

 - Thermal stability 

- Closely matched boiling points
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early-injection operation
 

• Measurements made in an N2
 
atmosphere (Matched T and ρ)
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Image Processing Summary 

• Data images are corrected for background interference and optical distortion 

• “Flat-field”  calibration images, obtained in homogeneous mixtures with known 
χfuel, further correct for laser sheet inhomogeneity 

• Fuel mole fraction is computed from: 

• The product 

is determined 

from in situ calibration studies 

• With the calculated , a local tem­
perature is estimated using an adiabatic 
mixing model and the estimate is 
refined until convergence is achieved 

• Mean images and ‘frequency’ distributions 
from single-cycle images are computed 
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Mixture Preparaton Overview 
SOI = -23.3°, Rs = 2.2, Pinj = 860 bar 

Measurements are made in three planes... 
Clearance volume plane 

Bowl rim plane 

Lower bowl plane 

Darkened areas of the laser sheet indicate visible regions 
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...through the start of HTHR
 
40 

Heat 
release 

Inj. 
Rate 

-20 -10 0 10 20 

H
e

a
t 

re
le

a
se

 r
a

te
 [

J/
°C

A
]


In
je

c
ti

o
n

 r
a

te
 [

 a
.u

. ]

 

30 

20 

10 

t�5IF�NJYUVSF�QSFQBSBUJPO�QSPDFTT�JT�DMFBSMZ�JMMVTUSBUFE�� 
First penetration dominates, then rotation. 

t�/PUF�UIF�UIPSPVHI�NJYJOH�JO�UIF�VQQFS�DFOUSBM�DZMJOEFS�
 

1.5 

1.0 

0.5 

0.0 




 

 

 

CA10 Mixture Distributon Plane 1 (clearance) 
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Plane 2 (rim) 

Plane 3 (bowl) 

Swirl 
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t Fuel in Plane 1 is near the cylinder walls and will 20 

be forced into the ring-land by during high tem­ 30 

perature heat release 30 

t Fuel-rich mixtures persist within the squish 20 

volume, but <φ> is less than 2 (single-cycle 

images show this also)
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t There is substantial over-lean mixture in the 
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The measured φ distributions at CA10 can be 

linked to the simulations to estimate emissions   

• The fuel mass at each φ can be 

computed from the images
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j i j i	 charge ⎝ m ⎠stoich 

•	 Multiplied by the UHC or CO yield 
predicted in the absence of further 
mixing 

•	 To provide a qualitative prediction 
of UHC and CO emissions from 
both rich and lean sources 
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We can also generate images of expected UHC & CO
 

distributions UHC	 CO 
Plane 1 (squish) (-5.0° CA) Plane 1 (squish) (-5.0° CA) 

•	 Strong bias toward UHC & CO 
sources from lean mixture in 
the upper cylinder 

•	 Emissions are expected to be 
dominated by the squish 
volume and the upper- 
central region of the cylinder 
(as expected from UHC/CO 
measurements) Plane 2 (rim) 
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We can also generate images of expected UHC & CO 

distributions UHC	 CO 
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•	 Strong bias toward UHC & CO 
sources from lean mixture in 
the upper cylinder 

•	 Emissions are expected to be 
dominated by the squish 
volume and the upper- 
central region of the cylinder 
(as expected from UHC/CO 
measurements) 

•	 Strong evidence that CO and 

UHC emissions are very 

closely linked to the initial 

mixture preparation process 
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Impact of Injecton Pressure 
(φ dist. @ CA10)  

Increased Pinj gives: 

t Greater penetration into the 
squish volume, with greater 
potential for crevice UHC 

t Higher φ in the head of the jet, 

with greater potential for soot 

and rich-mixture CO and UHC
 

t More over lean mixture in the 
upper-central region of the 
combustion chamber 

t More over lean mixture deep 
in the bowl 
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500 96.7 10.5 
860 121.2 11.2 
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See ASME ICES2012-81234 for additional details
 



 

 

  
 

 
 

Impact of Swirl Rato: Start of HTHR (CA10)  


Variation of swirl ratio increases 
some UHC/CO sources and de­
crease others, resulting in com­
plex emissions behavior 

Takeaways:
 

t UHC and CO sources initially 
increase with swirl due to in­
creased lean upper cylinder 
mixture (squish volume) 

t CO reduced at higher swirl due 
to mixture stratification 

CO UHCRs [g/kg-f] [g/kg-f] 

Engine 
emissions: 
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3.5 95.3 12.3 

Rs = 1.55 Rs = 2.2 Rs = 3.5 
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Impact of Injecton Timing (Start of HTHR) 


SOI=-27.8° SOI=-23.3° SOI=-12.5° 
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...but retarded injection significantly impedes
 

lean mixture oxidation 
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Summary and Conclusions 

•	 Considerable progress has been made in understanding how the 
mixture preparation process impacts UHC and CO emissions in 
low-temperature diesel combustion systems 
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engine-out emissions. 
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Summary and Conclusions 


•	 Considerable progress has been made in understanding how the 
mixture preparation process impacts UHC and CO emissions in 
low-temperature diesel combustion systems 

•	 Emissions expected from examination of the mixture distributions 
formed during the ignition delay period correlate well with measured 
engine-out emissions. 

The early mixture preparation process exerts a profound influence on 
the combustion and emissions formation processes 

•	 Mixture formation and kinetics interact to result in an optimal SOI 

With advanced injection, poor mixture preparation leads to both over-lean and 
over rich mixture, but fast kinetics promotes oxidation 

With retarded injection, mixture formation is improved, but volume expansion 
impedes oxidation of a wide range of φ 

•	 Our future efforts will be concentrated on multiple injection strategies 
and on better understanding bowl geometry effects 
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