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  Target: 5% fuel economy improvement using thermoelectrics. 
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The conversion efficiency stated here is based on the TE materials only and 
represents an upper limit of the generator efficiency.  Factors which will 
impact the efficiency include: 
 
Thermal losses due to poor heat transfer from exhaust gas to solid interface 
 
Parasitic thermal losses and electrical contact resistances.  

∆T = 500 K 

Optimization of ZT is challenging since all parameters are interrelated  
 
Decreasing ρ by doping decreases S due to the changes in Fermi-level 
 
Decreasing ρ by doping increase κ due to increased carrier contribution. 

1. G.J. Snyder E.S. Toberer Nature Mater. 7, 105 (2008) 
2. T.M Tritt, M.A. Subramanian MRS Bull. 31, 188 (2006)  

2. 

1. 

Efficiency of Energy Conversion for TE Materials 



ZT and Module Level Performance 

Efficiency = Pout/QH 



Thermoelectric Generators in the Vehicle 
The primary purpose of the TEG is to recuperate waste heat from the exhaust gas and convert to electricity.   
 
There are other advantages and opportunities that exist by virtue of having a heat exchanger scavenging waste 
exhaust energy. 
• Faster  engine warm-ups for improved FE and passenger comfort. 
• Use of rejected waste heat to warm other PT components during operation. 
 
Thoughtful thermal management is a must otherwise too much heat will likely need to be rejected by radiator 
Upsizing a radiator is likely not feasible due to cost, packaging and aerodynamics considerations. 
 
Thoughtful electrical power management is also a necessity .   
 



Development of TE Materials and High Throughput 
Production Methodology. 
In our first program we were interested in developing skutterudite based TE materials 
Advantages of Skutterudites. 
• Thermal conductivity can be reduced by the incorporation of fillers into the crystallographic voids 
• Can be made n- or p- type. Carrier concentration and type can be controlled by compositional changes. 
• Reasonably good tensile fracture strength 
  
Disadvantages: 
• The peritectic decomposition of the material below the composition’s melting point precludes simple melt 

cast techniques and requires potentially time consuming and energy intensive power metallurgy. 
• Antimony is prone to sublimation.  Need to be encapsulated. 
• Skutterudites are prone to oxidation at high temperatures, and will need to be isolated from the 

environment.   
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Base compound CoSb3 
 
Can be made n-type through 
filling electropositive 
elements 
 
Can be made p-type by 
substituting Fe on the Co site  
 



Ribbon product: 
not the desired 

skutterudite phase  

Resulting ingot melt-spun 
using specified 

temperature, ejection 
pressure, and wheel speed 

Fine-grain structure of the 
rapidly cooled ribbon 

product facilitates solid-
state reaction, eliminating 

need for lengthy 
annealing 

Traditional preparation of n-type filled-skutterudites 

Proposed melt-spin preparation of n-type filled-skutterudites 

Co and Sb shot pre-
melted by induction  at 

1400oC in a ratio of 1:3 in 
BN.  Followed by adding 

Ba, Yb and Sb to the 
desired composition and 
re-melting at  1200oC for 

5 min. 
 

The resulting  ingot is not 
the desired skutterudite 

phase since skutterudites 
decompose above 

840oC; products are:  
CoSb2 + Sb+ YbSb2  

2  weeks 
annealing at 

750oC 

Annealed samples are 
ground into powder for 
hot pressing or spark 

plasma sintering 

Resulting billets are >98% 
fully dense pure phase 

skutterudite  After annealing the 
product is 

BayYbxCo4Sb12 

For traditional method 2 weeks preparation time used 

Resulting billets are >98% 
fully dense pure phase 

skutterudite 

Co and Sb shot pre-
melted by induction  at 

1400oC in a ratio of 1:3 in 
BN.  Followed by adding 

Ba, Yb and Sb to the 
desired composition and 
re-melting at  1200oC for 

5 min. 
 

Ribbons are ground into 
powder for spark plasma 

sintering 

For melt spinning method preparation time is reduced to 4-5 hours 



Development of TE Materials and High Throughput 
Production Methodology 
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Annealed for 1 week at 650oC This was found to be true for 
both n- and p-type skutterudite 
materials and did not matter if 
the materials were rapidly 
quenched (higher wheel speed) 
or slow quenched. 
 
N-type materials are more stable 
at higher temperatures. 
 
P-type tended to decompose in 
the SPS if sintering temperature 
exceeded 600 oC.  

Fe Traditional Method  Fe Melt Spun 

http://www.molycorp.com/


High Temperature Transport Properties and Composition  

Pr0.176+0.004Nd0.50+0.01Fe3.41+0.02Ni0.588+0.007Sb12.09+0.02 

SQ FQ 

LT QD PPMS 

ZTav. ~ 0.65  
(100g batch) 

http://www.molycorp.com/


A small and  likely statistically insignificant improvement 
in ZT with a faster quench rate:   
(ZT= 0.97 for SQ vs. ZT =1.05 for FQ and VFQ at 740 K)  
 
Sample transport properties were repeatable over the 
heating and cooling cycle. 
 
Tests are underway to look at cycling reproducibility. 

Transport Property Evaluation N-type Materials 

ZTav. ~ 0.70  
(100g batch) 

http://www.molycorp.com/


Composition and Microstructure of N-type Materials 
SQ 

Yb0.11Ba0.085Co4.00Sb12.06 

FQ 

Yb0.09Ba0.070Co4.00Sb12.02 

VFQ 

Yb0.11Ba0.067Co4.00Sb12.09 



Materials Passivation 
Sublimation of Sb from the hot side leads to a gradual increase in the module’s internal 
resistance.  This is caused by changing carrier concentration and necking at the TE 
material/metal interconnect junction. 
 
Oxidation is also a concern.  It is likely not feasible to hermetically seal the entire 
generator so individual modules or legs will need to be encapsulated in an inert 
atmosphere.   

Results of  several measurements performed in a 
poor vacuum atmosphere  

Castable ambiently dried aerogel for 
sublimation suppression and thermal 

insulation. 



Modules from Melt Spun Skutterudites 

Ni block Heat Source 

Water cooled 
Cu block heat 
sink 

Thot source 

Tcold 

Module 



Comparison of Gen 1 and Gen 2 Skutterudite Modules 

Thermal Equivalent 
Circuit Thot Source 

KH 

KG 

KC 

S(TH)I TH 

S(TC)I TC 

1I2Rint  
1I2Rint 

Th 

Tc 

TCold 

Ni heater 

Cu heat 
Sink 

∆T= Thot Source-Tcold 
∆TG = Th-Tc 

TE Module 



Effects of Thermal Interface Contact Resistance on 
Generator Power 

(oC) 

The presence of thermal interface 
contact resistance and alumina 
ceramics greatly reduce the ∆T 
experienced by the TE elements.  
  
This is particularly severe under high 
large temperature gradients (high heat 
flux conditions.   



Efforts to Reduce Thermal Interface Contact Resistance  
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Summary ,Conclusions, and Future Directions 
• We have demonstrated that a combination of melt spinning combined with consolidation 

techniques such as SPS or hot pressing is a scalable and potentially high throughput method for 
skutterudite thermoelectric materials production.  ZT values compare favorably with literature 
values for Yb and Ba filled skutterudites . 
 

• Three point tensile fracture testing finds that most samples failed from edge or surface flaws 
indicating that MS-SPS processing is a mature powder processing technique that leads to low 
number of volume flaws. 
 

• High temperature TE modules were made from these MS-SPS materials and the modules were 
characterized.   Despite the superior TE performance of the p-type material used in the Gen-2 the 
internal resistance is still quite high due to larger electrical contact resistance.   
 

• Thermal contact resistance, at least in test stand measurements, seem to have been reduced with 
the smaller Gen.-2 module leading to superior module level performance.  
 

• We are in the process of investigating low cost sustainable filler elements for skutterudite 
materials that are compatible with MS-SPS processing to reduce materials costs reduce utilization 
of high priced rare-earth elements. 
 

• Efforts are underway to reduce electrical contact resistance in the new p-type formulation. 
 

• Efforts to reduce thermal interface contact resistance are also ongoing as well as metrology to 
characterize these value to assist in generator modeling.    

 
 
 



Thank You ! 
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