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OUTLOOK FOR GLOBAL FUEL ECONOMY  
AND GREENHOUSE GAS REQUIREMENTS 

CHINA 
• 6.9L/100km in 2015 (37 mpg) 
• 5.0L/100km by 2020 (56 mpg) 
• Local taxation 

U.S. FEDERAL 
• 35.5 mpg in 2016 
• 54.5 mpg by 2025 
• Gasoline $3-4/gallon 

 

CANADA 
• Green Levy  
• 6.6L/100km (35.5 mpg) in 2016  

JAPAN 
• 29% CO2 

2010  2015 

EUROPEAN UNION 
• 130gCO2/km in 2015 (43 mpg) 
• 95gCO2/km in 2020 (58 mpg) 
• Local CO2 taxation 

KOREA 
• 140g/km (39.5 mpg) 

MEXICO 
• 10.8 km/l by 2015 

INDIA 
• 150 gCO2/km by 2015 (43 mpg) 

CALIFORNIA 
• 80% CO2 reduction by 2050 
• ZEV, PZEV rules 

AUSTRALIA 
• 190 gCO2/km  in 2015 (43 mpg) 
• 155 gCO2/km  by 2024 



OUTLOOK FOR GLOBAL FUEL ECONOMY  
AND GREENHOUSE GAS REQUIREMENTS 

CHINA 
• 6.9L/100km in 2015 (37 mpg) 
• 5.0L/100km by 2020 (56 mpg) 
• Local taxation 

U.S. FEDERAL 
• 35.5 mpg in 2016 
• 54.5 mpg by 2025 
• Gasoline $3-4/gallon 

 

CANADA 
• Green Levy  
• 6.6L/100km (35.5 mpg) in 2016  

JAPAN 
• 29% CO2 

2010  2015 

EUROPEAN UNION 
• 130gCO2/km in 2015 (43 mpg) 
• 95gCO2/km in 2020 (58 mpg) 
• Local CO2 taxation 

KOREA 
• 140g/km (39.5 mpg) 

MEXICO 
• 10.8 km/l by 2015 

INDIA 
• 150 gCO2/km by 2015 (43 mpg) 

CALIFORNIA 
• 80% CO2 reduction by 2050 
• ZEV, PZEV rules 

AUSTRALIA 
• 190 gCO2/km  in 2015 (43 mpg) 
• 155 gCO2/km  by 2024 

  MPG YEAR 
 U. S. 54.5 2025 
 Europe 58 2020 
 China 56 2020 
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Chevrolet Cruze Fuel Energy Breakdown 
(major fuel energy losses typical for combined EPA city and highway driving)  

Tire Rolling Resistance  12%  

Engine Mechanical & 
Pumping Friction  37%  

Electrical Loads  
3%  

Aerodynamic Drag  
17%  

Transmission and Final Drive  18%  

Vehicle Mass (kinetic energy 
dissipated during braking)  11%  

Driveline and Chassis  2%  

Mechanical Energy = Energy into Piston = 38% of Fuel Energy 

Exhaust and Coolant Heat Losses = 62% of Fuel 
Energy 

Fuel Energy  

Mechanical Energy Losses 
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SI ENGINES - Current state of the art  
Cam Phasing, Variable Valve  
Lift, Active Fuel Management 

Spark Ignition 
Direct Injection 

Downsized SIDI 
Turbo Boosting Advanced Combustion 
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DOWNSIZED TURBO GASOLINE 
ENGINE 
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LP Turbo 

HP Turbo 

CI ENGINES – Current state of the art 
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CHEVROLET CRUZE DIESEL 



 Thermal management 
 Parasitic loss reduction 
 Friction reduction 
 Combustion system evolution 
 After treatment optimization 
 Electrification 
 System Optimization 

The Next Frontier In Engine Efficiency 

* This is not really a new frontier  
It is actually paying attention to fundamental engine design principles 
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C. Dean 

ADVANCED IC ENGINES 

– Different stages of the  
cycle can be separated 
into different working 
volumes 

– Possible to optimize each 
stage individually, including 
heat loss management and 
exhaust energy 
recuperation 

– Initial modeling shows 
potential for very high  
thermal efficiency 

 

MAXIMIZING EFFICIENCY BY MINIMIZING LOSSES  
THROUGH ARCHITECTURE OPTIMIZATION –  
DUAL COMPRESSION, DUAL EXPANSION TECHNOLOGY 



ADVANCED IC ENGINES 
Operating points on brake thermal efficiency map (%) 
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PASS – HOW DOES IT WORK? 

TWC SCR 

Use H2 and CO to generate NH3 over 
TWC and store NH3 in multiple SCRs 

Use the stored NH3 for lean  
NOx conversion 

NOX + H2/CO ⇔ NH3 + CO2 NOX + NH3 ⇔ N2 + H2O 
DURING RICH: DURING LEAN: 

UREA-FREE SCR SYSTEM 

NH3 

NOx 

RICH 

LEAN 

H2O 

N2 



Aftertreatment Challenges 
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Propulsion System Technology Application Map 
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Continuous Stop-and-go 

High Load 

City Highway Intra-urban Highway-cycle 



General Motors eASSIST™ Technology 

LaCrosse  
and Regal  

36 Hwy MPG 
 

Malibu ECO 
37 Hwy MPG 



VOLTEC PROPULSION SYSTEM 



ORDINARY DRIVERS 
6,000 

MILES LOGGED 
>2,500,000 

PRODUCTION-INTENT 
FUEL CELL SYSTEM 

WHAT If Battery Improvements  
Don’t Go Far Enough? 



Hydrogen Fuel Cell Technology 
– Zero emissions and zero 

petroleum 
– Compared to internal combustion 

engine: 
– More than twice as efficient 
– Comparable precious metal 

content 
– Comparable durability, range  

(300 miles) and performance 
– Fast refueling – within 3 

minutes 
– 60% fewer part numbers 
– 90% fewer moving parts 

– Cold and hot operation capability 
– Family-sized vehicles 
– Synergy with renewable  

energy sources 



 In a lighter vehicle, a 
smaller less powerful 
powertrain may be used 

 These downsized 
powertrains can still 
benefit from the 
technology improvement 

Powertrain solutions only achieve their full potential, if combined with vehicle level 
optimizations such as mass reductions & aerodynamic improvements 

System Optimization in the 
Vehicle 

Maintained Performance 

Energy Management of the Vehicle System: 
 Thermal management  
 Active management of the electrical system 
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 SI and CI engine capability continues to converge 
– Smaller displacements 
– High pressure, direct fuel injection 
– Broad application of turbocharging 
– Advanced combustion processes 
– Advanced aftertreatment 
– Reduced friction 
– Reduced mass 
– Improved thermal management 

 Hybrid and Fuel Cell technology continues to mature  
… but conventional engine technology continues to play a key role 

Future Technology Outlook 
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Thank you for your attention 
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