NH$_3$-Selective Catalytic Reduction over Ag/Al$_2$O$_3$ Catalysts

Stefanie Tamma, Sebastian Fogelb, Magnus Skoglundha, Pär Gabrielssonb and Louise Olssona

aCompetence Center for Catalysis, Chalmers University of Technology
bHaldor Topsøe A/S
HC-SCR over Ag/Al₂O₃

- H₂ lowers the temperature, where Ag/Al₂O₃ is active for HC-SCR
- Ag/Al₂O₃ is not active for H₂-SCR
- H₂ is a co-reductant

- Conditions: 500 ppm NO, 375 ppm C₈H₁₈, 1 vol% H₂, 6 vol% O₂, 10 vol% CO₂, 350 ppm CO, 12 vol% H₂O in He.
NH₃-SCR over Ag/Al₂O₃

- High activity at low temperature
- H₂ is needed for NH₃-SCR

Concitions: 1000 ppm NO, 1000 ppm NH₃, 1 vol% H₂, 6 vol% O₂, 7 vol% H₂O. GHSV = 30000 h⁻¹

H\textsubscript{2}-assisted NH\textsubscript{3}-SCR - own results

- 6 wt% Ag on Al\textsubscript{2}O\textsubscript{3}
- Presulfated monolith catalyst
- 250 ppm NO
- 250 ppm NH\textsubscript{3}
- 750 ppm H\textsubscript{2}
- 10% O\textsubscript{2}
- 5% H\textsubscript{2}O
- in Ar
- GHSV = 33 100 h-1

• The hydrogen concentration is divided by 3.
• NO\textsubscript{x} conversion decreases with increasing NO concentration.

- 125 – 375 ppm NO
- 250 ppm NH\textsubscript{3}
- 750 ppm H\textsubscript{2}
- 10% O\textsubscript{2}
- 5% H\textsubscript{2}O
- in Ar
- GHSV =33 100 h-1
- NO\textsubscript{x} conversion increases with increasing NH\textsubscript{3} concentration to a ratio of 1:1.

NH\textsubscript{3} variation

- 250 ppm NO
- 125 – 375 ppm NH\textsubscript{3}
- 750 ppm H\textsubscript{2}
- 10% O\textsubscript{2}
- 5% H\textsubscript{2}O
- in Ar
- GHSV = 33 100 h-1

![NH\textsubscript{3} variation graph](image)
The ratio between NO and NH$_3$ conversion was in all experiments 1:1.
Variation of H₂

- Higher NOₓ conversion with higher H₂ concentration
- Above 300°C all H₂ is converted
- H₂ conversion is independent on NO : H₂ ratio

- 250 ppm NO
- 250 ppm NH₃
- 0-1500 ppm H₂
- 10% O₂
- 5% H₂O in Ar
- GHSV = 33 100 h⁻¹
NO\textsubscript{x} conversion levels out at 250 and 300 °C but increases constantly at 150, 200 and 400 °C.
• The ratio between NO and H₂ conversion was in all experiments 1:2 without unselective H₂ oxidation.
Role of H_2

From own experiments
- Limit in NO_x conversion due to H_2
- Defined ratio of $\text{NO}:\text{H}_2 = 1:2$

Proposals in the literature
- Increase of the number of small silver clusters
- Reduction of silver species
- Increase of the amount of surface nitrates
- Hydrogen reduces or removes nitrates from the catalyst
H₂ reduces nitrates?

- Step – response DRIFT experiment at 250°C
- NH₃, NO and H₂ are switched in and out
- Step length: 1 h
- Nitrates increase from step 3
H₂ assists nitrite conversion

- Step – response DRIFT experiment at 250°C
- 5 min nitrate/nitrite formation from NO + O₂ → 1 min 10% O₂ → 2 min 1000 ppm H₂ + 10% O₂
Summary

• Ratio between NO : NH₃ : H₂ = 1 : 1 : 2

• Increasing the H₂ concentration => NOₓ conversion levels out at 250 and 300°C but increases constantly at 150, 200 and 400°C.

• H₂ concentration can limit the NOₓ conversion although NH₃ is available in excess.

• H₂ assists the conversion of nitrites to nitrates
Acknowledgements

• The collaboration with Haldor Topsøe, Amminex and DTU is gratefully acknowledged.

• This work was financially supported by the Danish Council for Strategic Research.

• It was performed at the Competence Centre for Catalysis, which is
 —hosted by Chalmers University of Technology and
 —financially supported the Swedish Energy Agency and the member companies AB Volvo, ECAPS AB, Haldor Topsøe A/S, Scania CV AB and Volvo Car Corporation AB.