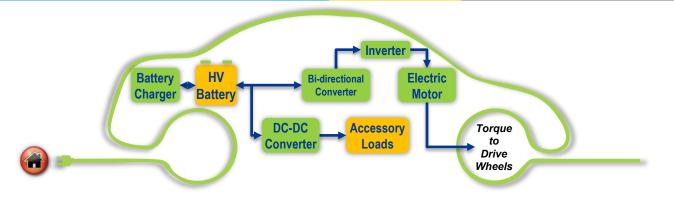
EV Everywhere Grand Challenge

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


ELECTRIC DRIVE STATUS AND CHALLENGES

July 24, 2012

Susan Rogers Advanced Power Electronics and Electric Motors (APEEM) R&D Vehicle Technologies Program U. S. Department of Energy

Key DOE Technical Targets

Traction Drive Requirements: 55 kW peak power for 18 sec; 30 kW continuous power; 15-year life

Traction Drive System				Power Electronics			
					(\$/kW)	(kW/kg)	(kW/l)
Impacts	Reduce	Reduce	Reduce	Reduce Energy Storage	7.9	10.8	8.7
\rightarrow	Cost	Weight	Volume	Requirements	7	11.2	10
		Specific	Power		5	12	12
	Cost	Power	Density		3.3	14.1	13.4
Year	(\$/kW)	(kW/kg)	(kW/l)	Efficiency			
2010*	19	1.08	2.60	>90%	Electric Motors		
2010	10	1.00	2.00		(\$/kW)	(kW/kg)	(kW/l)
2012	17	1.12	2.86	>91%	11.1	1.2	3.7
2015	12	1.17	3.53	>93%	10	1.24	4
					7	1.3	5
2020	8	1.44	4.00	>94%	4.7	1.6	5.7

* 2010 traction drive cost target achieved with development of the GM integrated traction drive project

Vehicle Technologies Program – Advanced Power Electronics and Electric Motors

EV Everywhere **Electric Drive Targets**

U.S. DEPARTMENT OF Renewable Energy

Traction drive cost reduction and performance improvements are necessary to achieve the EV Everywhere Grand Challenge

Chevy Volt

- ~40 mile electric range •
- HEV: 32 mpg /300 miles
- 120 kW electric drive
- electric drive cost:~\$2,400

Nissan Leaf

- ~75 mile electric range
- 80 kW electric drive
- electric drive cost:~\$1,600

Tesla Model S

Energy Efficiency &

- ~ 250 mile electric range
- 270 kW electric drive
- electric drive cost:~\$5,400

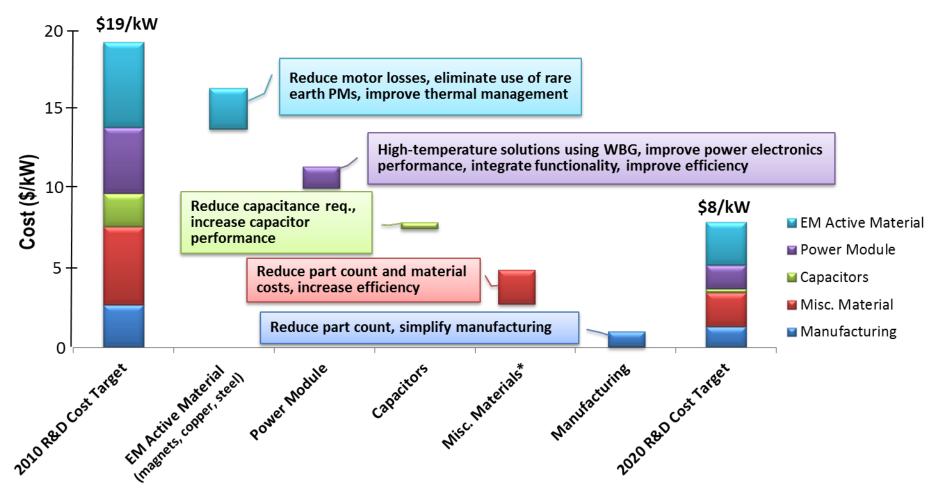
EV Everywhere Tar	get Analysis	Current Status	PHEV 40	AEV 100	AEV 300
System Cost	\$/kW	20	5	14	4
Motor Specific Power	kW/kg	1.2	1.9	1.3	1.3
PE Specific Power	kW/kg	10.5	16	12	16.7
System Peak Efficiency	%	90	97	91	98

On-board charging capability is essential to EV Everywhere

Current status and future targets are as follows:

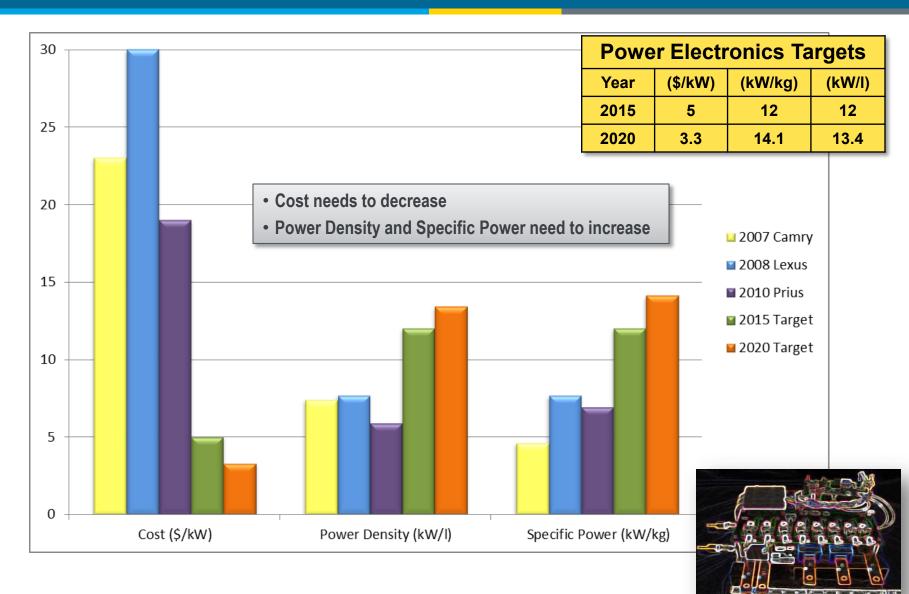
3.3 kW Charger	2010	2015	2022
Cost	\$900 - \$1,000	\$600	\$330
Size	6-9 liters	4.0 liters	3.5 liters
Weight	9 -12 kg	4.0 kg	3.5 kg
Efficiency	90 – 92 %	93%	94%

- Cost is the most significant challenge
- Weight and volume reductions are necessary
- Traction drive and vehicle-level integration
- Integrated functionality is key
- Long-term solutions for fast charging and wireless power transfer


- Establish electric drive vehicle performance requirements
- Traction drive performance modeling and simulation
- Hardware-In-the-Loop and benchmark testing

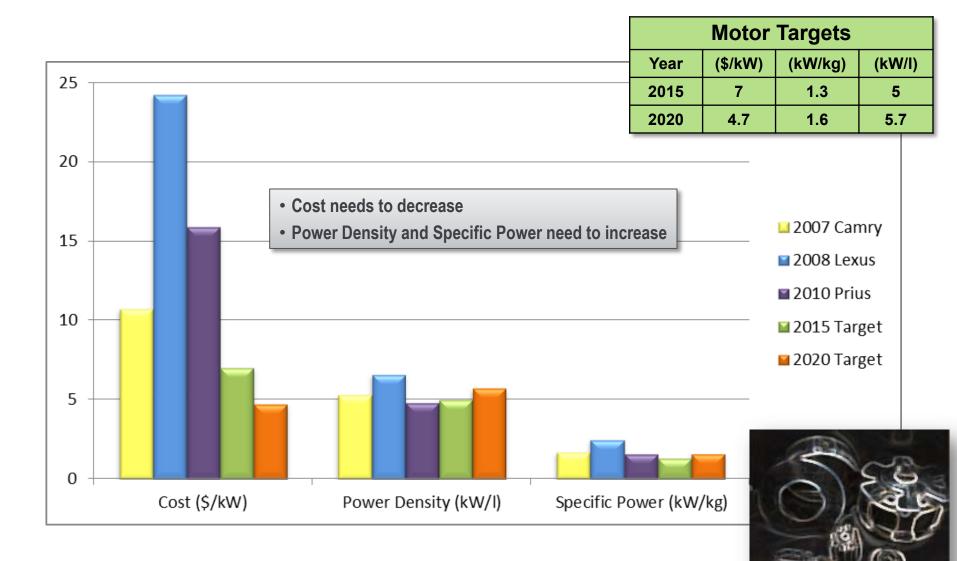
Key Parameter	PHEV	AEV		
Traction Drive Usage	Multiple modes	Full range		
Peak Output Power	55 to 150 kW			
Continuous Output Power	20 to 85 kW	65 kW		
Power Density	4 kW/l			
Specific Power	1.4 kW/kg			
Efficiency	94%			
Cooling Temperature	75°C			
Cost Target	\$ 8/kW			

Opportunities to Achieve Traction Drive Cost Target


Energy Efficiency & Renewable Energy

* Inverter: cold plate, drive boards, thermal interface material, bus bar, current sensors, housing, control board, etc. Motor: bearings, housing, sensors, wire varnish and insulation, potting materials, shaft, etc.

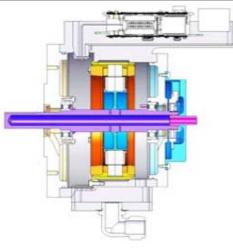
Power Electronics for Traction Drive Applications


U.S. DEPARTMENT OF

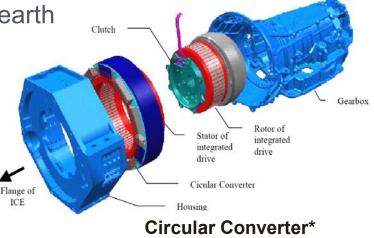
eere.energy.gov

Electric Motors for Traction Drive Applications

U.S. DEPARTMENT OF EI



eere.energy.gov

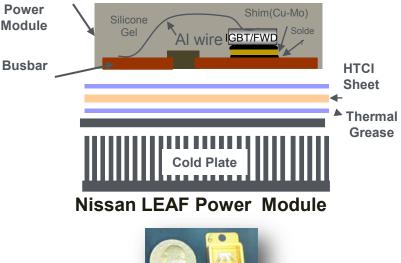

Traction Drive Challenges & Issues

- Cost is the biggest challenge
 - What is the most cost effective solution?
 - Are integrated systems worth the tradeoffs?
- Packaging improvements are needed
 - At device and component levels
 - Higher temperature and manufacturability
- Advanced materials and designs
 - High temperature silicon vs. WBG devices
 - Low-cost, high-temperature bus capacitors
 - Motors with reduced or eliminated rare earth content
- Reliability
 - Simultaneous vibration & temperature
 - Service life requirements
- Thermal management
 - Reduce heat generation
 - Improve heat transfer
 - System and vehicle-level integration

Integrated Motor and Inverter Concepts*

*ORNL/University of Wisconsin-Madison

Power Electronics Challenges & Issues


ENERGY Energy Renewa

Energy Efficiency & Renewable Energy

- Cost is the biggest challenge
 - Power module and passive components
 - Emphasis on modular, scalable designs
- Volume and mass reductions are needed
 - Driven by passive devices
 - Packaging issues exist-at all levels
- Packaging and Advanced materials required
 - Higher temperature capability
 - Increase thermal conductivity
- Reliability
 - Wirebonds, die and substrate attach, solders, & connectors
 - Substrates and epoxies
- Thermal Management
 - Liquid cooling to air
 - Single sided or double sided
- Efficiency
 - Idle or quiescent loads

55 kW Delphi Inverter with Viper Power Module

Electric Motor Challenges & Issues

Vehicle Technologies Program – Advanced Power Electronics and Electric Motors

- Costs are the biggest challenge
 - Rare earth costs and uncertainty
 - Uncertainty of copper prices

Volume and mass reductions are needed

- Higher operating speeds
- Low loss laminations
- Higher slot fill

Thermal Management

- Temperature limitations of existing materials
- Improve heat transfer

• Packaging and Advanced materials required

- Higher temperature capability
- Increase thermal conductivity
- Reliability
 - Stake-welds, solders, connectors, insulation
 - Epoxies
- Efficiency
 - System level component matching

GE 55 kW IPM Motor

UQM IPM Motor

U.S. DEPARTMENT OF Ene Ren

Energy Efficiency & Renewable Energy

Combining the battery charger, inverter, inverter controls, electric motor, and thermal management into one integrated traction drive will enable cost reduction.

Challenges exist with advanced materials and devices:

- WBG switches and diodes
- Non-rare earth magnets
- Small, high temperature passive devices
- Innovative packaging and advanced designs
- High reliability to meet service life and warranty
- High voltage insulation systems

Information Sources

- DOE VTP FY 2011 Advanced Power Electronics and Electric Motors Annual Progress Report
 - http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/2011 _apeem_report.pdf
- USDrive Electrical and Electronics Technical Team Roadmap
 - http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/eett_ roadmap_12-7-10.pdf
- DOE Vehicle Technologies Multi-year Program Plan 2011-2015; Section 2.2.1
 - http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_m ypp_2011-2015.pdf

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Susan Rogers 202-586-8997 Susan.Rogers@ee.doe.gov www.vehicles.energy.gov