

EV Everywhere Battery Workshop: Preliminary Target-Setting Framework

Jacob Ward, Vehicle Technologies Senior Analyst

July 26, 2012 Doubletree-Rosemont, Chicago, IL

For this Analysis, Three "EV" Scenarios

- PHEV40 reduces battery size while removing range issues, but involves the higher cost of two powertrains
- AEV100 minimizes vehicle purchase cost, but introduces range/vehicle use/infrastructure tradeoffs
- **3.** AEV300 helps to address range issues, but large battery leads to high vehicle cost

Vehicle-level analysis provides a starting point for setting EV Everywhere technical targets for these vehicles.

Levelized Cost of Driving (LCD)

vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled

Analysis Assumptions: 2022 midsize vehicle, mid-case technology projection (with high and low technology sensitivities), EIA's AEO11 "High Oil" fuel prices projections for 2022 = {Gasoline \$5.12/gal, diesel \$4.76/gal, Electricity \$4.12/gge}, 14.5k miles/year, 5-year analysis period, no discounting, retail markup over manufactured cost = +50%

EV Everywhere Analysis Process Flow

in three steps...

- 1. DOE experts **define the bounds of technical possibility** for technology key metrics
 - 90% "low progress" scenario
 - 50% "mid case" scenario
 - 10% "high progress" scenario
- 2. Define virtual vehicles in Argonne National Lab's Autonomie modeling and simulation software
- Compare vehicles in a 5-year simple payback framework within bounds defined by experts

Comparing LCDs

Implications for 5-year payback—

Vehicle	Payback (?)
SI HEV	Yes, at mid technology case
SI PHEV10	Yes, between mid and high technology case
SI PHEV40	No, requires push just beyond high technology case
AEV100	Yes, even at "low" technology case
AEV300	No, requires aggressive push beyond high technology case

Estimating 5-year LCD equivalents

Setting Targets – how aggressive?

Vehicle architectures that are already LCDcompetitive in the analysis framework at current targets (green dots) can still be cost competitive with a <u>less aggressive</u> push to the target: Vehicle architectures that are not LCDcompetitive in the analysis framework at current targets (yellow dots) can still be cost competitive with <u>more aggressive</u> push to the target:

Vehicle architectures that are not LCDcompetitive even at the stretch target level (red dots) require an <u>even more aggressive push</u> beyond stretch targets:

Analysis: 2022 Midsize SI PHEV40

Analysis: 2022 Midsize AEV100

Analysis: 2022 Midsize AEV300

Target Implications Summary –

		Current Status	PHEV40	AEV100	AEV300
Battery Cost	\$/kWh	~650	190	300	110
Power electronics and motor	\$/kW	~20	5	14	4
% Weight Removed	%	n/a	29	3	30
Charger Cost	\$	~150	35	140	25