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Purpose of work

= Improving models for diesel
engines
* n-hexadecane: important fuel
component for diesels

/\/\/\/\/\/\/\/

Improved base chemistry up though
n-heptane and iso-octane

/\/\/\

= Improving models for HCCI
engines

* Understanding the effect of
boost pressure

Improving models for bio-derived,
renewable fuel

* methyl decanoate,
bio-diesel surrogate

Mo/

Lawrence Livermore National Laboratory

LLNL-PRES-401329

2

Option:Additional Information



FY2007 Reviewer’'s Comment and Response

= Reviewer comment: “Even if some accuracy is sacrificed,
production of models with a substantially reduced reaction count
would be an added contribution.”

= Response: We have developed a reduced model for a biodiesel
surrogate (methyl decanoate) during the last year.

= Reviewer comment: “It will be very important to evaluate the
mechanisms that are developed for engine conditions. The time
rate of change of pressure and temperature in an engine are
important aspects of the mechanism evaluation.”

= Response: During the last year, we have done extensive modeling
of the Sandia HCCI engine under boosted conditions with several
fuel types.
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Barriers

= Increases in engine efficiency and decreases in engine emissions
are being inhibited by an inadequate ability to simulate in-cylinder
combustion and emission formation processes

« Qur project is improving the ability to simulate these processes
by developing better and more complete detailed chemical
kinetic models of gasoline, diesel and alternative fuels
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Approach

= Develop chemical kinetic reaction models for each individual fuel component of
importance for fuel surrogates of gasoline, diesel, and alternative fuels.

= Combine mechanisms for representative fuel components to provide surrogate
models for practical fuels

o diesel fuel

« gasoline (HCCI and/or Sl engines)
* Qil-sand derived fuels

* Biodiesel and oxygenated fuels

= Reduce mechanisms for use in CFD and multizone HCCI codes to improve the
capability to simulate in-cylinder combustion and emission formation/destruction
processes in engines

= Use the resulting models to simulate practical applications in engines, including
diesel, HCCI and spark-ignition, as needed

= [teratively improve models as needed for applications
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Technical Accomplishment Summary

= Improving models for diesel
engines

 Completed of high and low
temperature, C8-C16
mechanism

N S S

= Completed validation of base

chemistry up to n-heptane and iso-
octane

/\/\/\

= Improving models for HCCI
engines

e Simulated HCCI engine
experiments at Sandia using
new chemical kinetic
mechanisms for gasoline
surrogate, cyclohexane and
PRF fuels.

= Improving models for bio-derived,
renewable fuel

« Validated both low and high
temperature mechanism for
biodiesel surrogate

— methyldecanoate

Q
/\/\/\/\)J\/
o
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We have developed a model for n-hexadecane, a primary
reference fuel for diesel NS

= One of the two primary reference fuels for Recommended surrogate for diesel
diesel ignition properties (cetane number) fuel (Farrell et al., 2007):

* n-hexadecane

n-hexadecane

/\/\/\/\/\/\/\//\/\/\/\/\/\/\/

 2,2,4,4,6,8,8 heptamethylnonane heptamethylnonane

= High and low temperature portion of the
n-hexadecane mechanism complete n-decylbenzene
e Low temperature kinetics most important

for diesel and HCCI engines: Low
temperature mechanism developed next.

* First-ever complete set of high and low
temperature kinetic mechanisms for all Cg
- C,5 N-alkanes

1-methylnapthalene
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n-Hexadecane model behavior agree well with experiments
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n-Decane model agrees well with experiments under engine-

type conditions
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We have developed a low and high temperature mechanism
for methyldecanoate, a surrogate for biodiesel:

Methyldecanoate represents key features of biodiesel components:

@

/\/\/\/\)J\ 3000 species
methyldecanoate o/ 8000 reactions

8]
methyl palmitate /\/\/\/\Ml\o/

Soy and rapeseed 0

oll components: methyl stearate /\/\/\/\/\/\/\/\J\o/

o

methyl oleate o
methyl linoleate
C_
o}

methyl linolenate m/wo/

Lawrence Livermore National Laboratory b
10

LLNL-PRES-401329 Option:Additional Information




Biodiesel surrogate model of methyl decanoate results compare well
with experiments at engine type conditions (10 atm and 790-1040K)

Mole Fraction

methyl decanoate o
1.E-02 -
1.E-03 -
1.E-04 -
+02 oC0O2 xCO aCH4 ©0C2H4
1.E-05
790 840 890 940 990 1040

Temperature (K)

The early formation of CO, is better reproduced
by the MD mechanism

Early CO, formation reduces effectiveness of
oxygenated fuels for reducing soot formation

Experiment:
Rapeseed methyl esters

n-hexadecane (Dagaut et al.)
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Partial burn, HCCI experiments on Methyl decanoate ||
(Szybist et al.) /\/\/\/\)‘\O -

= Motored engine with adjustable compression ratio (no spark)
= |ncrease compression ratio until autoignition occurs
= Measure species in exhaust of engine

= Assumptions required for simulations: - TbC
* temperature at bottom dead center adjusted L
* In-cylinder gases are homogeneous
* No heat losses — BDC

Chemkin 4.1 code
= Residual gases taken in account by computing
several cycles
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Validate approach with partial burn, HCCI of n-heptane
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Partial burn, HCCI of Methyl decanoate I
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Temperature at Autoignition T, | [K]

Developed reduced methyl decaw
/

use in reacting flow codes
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Improved base chemistry give better model predictions at
engine conditions:
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Mechanisms are available on LLNL website and by emall

http://www-cmis.linl.gov/?url=science_and_technology-chemistry-combustion
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Modeling of HCCI engine to understand behavior at high boost
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Technical Publications during FY08

C. K. Westbrook, W. J. Pitz, O. Herbinet, H. J. Curran and E. J. Silke, "A Detailed Chemical Kinetic Reaction Mechanism For
n-Alkane Hydrocarbons From n-Octane to n-Hexadecane," Combust. Flame (2008) Submitted.

E. J. Silke, W. J. Pitz, C. K. Westbrook, M. Sjoberg and J. E. Dec, “Understanding the Chemical Effects of Increased Boost
Pressure under HCCI Conditions”, 2008 SAE World Congress, Detroit, Ml, SAE 2008-01-0019, 2008.

R. P. Hessel, D. E. Foster, S. M. Aceves, M. L. Davisson, F. Espinosa-Loza, D. L. Flowers, W. J. Pitz, J. E. Dec, M. Sj6berg
and A. Babajimopoulos, Modeling Iso-octane HCCI using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed
Speciation Data over a Range of Lean Equivalence Ratios, 2008 SAE World Congress, SAE 2008-01-0047, Detroit, Ml,
2008.

Sakai, Y., Ozawa, H., Ogura, T., Miyoshi, A., Koshi, M. and Pitz, W. J., "Effects of Toluene Addition to the Primary Reference
Fuel at High Temperature,” SAE Commercial Vehicle Engineering Congress & Exhibition, Chicago, IL, 2007.

Y. Sakai, A. Miyoshi, M. Koshi and W. J. Pitz, “A Kinetic Modeling Study on the Oxidation of Primary Reference Fuel-
Toluene Mixtures Including Cross Reactions between Aromatics and Aliphatics”, Proc. Combust. Inst., Montreal, Canada,
submitted, 2008.

O. Herbinet, W. J. Pitz and C. K. Westbrook, "Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate,"
Combust. Flame (2008) submitted.

K. Seshadri, T. Lu, O. Herbinet, S. Humer, U. Niemann, W. J. Pitz and C. K. Law, "Ignition of Methyl Decanoate in Laminar
Nonpremixed Flows," Proceedings of The Combustion Institute (2008) Submitted.

C. K. Westbrook, W. J. Pitz, P. R. Westmoreland, F. L. Dryer, M. Chaos, P. Osswald, K. Kohse-Hoinghaus, T. A. Cool, J.
Wang, B. Yang, N. Hansen and T. Kasper, “A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small
Alkyl Esters in Laminar Premixed Flames”, Proc. Combust. Inst., Montreal, Canada, submitted, 2008.
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Industry Collaboration

= Our major current industry collaboration is via the DOE working groups on
HCCI and diesel engines.

» All results presented at Advanced Engine Combustion Working group
meetings (Industry, National labs, Univ. of Wisc.)

» Collaboration with Magnus Sjoberg and John Dec at Sandia on HCCI
engine experiments

» Collaboration with Randy Hessel at Univ. of Wisconsin on CFD
simulations.

» Collaboration with Jim Szybist (ORNL) and Andre Boehman (Penn State).
= Second interaction is participation with universities

» Collaboration with C. K. Law’s group, Princeton University on mechanism
reduction

e Collaboration with Curran at National Univ. of Ireland

» Collaboration with Prof. Koshi at University of Tokyo on toluene.
= Participation in other working groups with industrial representation

* Fuels for Advanced Combustion Engines (FACE) Working group

e Surrogate fuel working group with representatives from industry (Exxon,
Caterpillar, Chevron, United Technologies)
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Activities for Next Fiscal Year

= Kinetic model for large iso-alkanes present in Diesel fuel:

2,2,4,4,6,8,8 hepta-methyl-nonane W

= Further modeling of enhanced surrogate fuels with comparisons to
engine experiments

* Improved n-heptane, iso-octane, toluene surrogate model for
gasoline

= Longer term:
e Large aromatic for diesel fuel

» Assess the effect of molecular structure by examining a
biodiesel surrogate component with a double bond
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Summary

Approach to research

 Continue development of surrogate fuel mechanisms to improve
engine models for HCCI and diesel engines

Technical accomplishments:

« Completed reaction mechanism for the high and low temperature
oxidation of n-hexadecane

Collaborations/Interactions

e Collaboration through AEC working group with industry. Many
collaborators from National Labs and Universities.

Plans for Next Fiscal Year

 Complete low/high temperature mechanism to represent large
Iso-alkanes in a diesel surrogate fuel: 2,2,4,4,6,8,8 hepta-methyl

nonane, diesel reference fuel W
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