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Purpose of work


�	 Improving models for diesel 
engines 
•	 n-hexadecane: important fuel 

component for diesels 

�	 Improving models for HCCI
engines 
•	 Understanding the effect of

boost pressure 

� Improved base chemistry up though
n-heptane and iso-octane 

�	 Improving models for bio-derived,
renewable fuel 
•	 methyl decanoate, 


bio-diesel surrogate


O 

O 
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FY2007 Reviewer’s Comment and Response


� Reviewer comment: “Even if some accuracy is sacrificed, 
production of models with a substantially reduced reaction count 
would be an added contribution.” 

� Response: We have developed a reduced model for a biodiesel 
surrogate (methyl decanoate) during the last year. 

� Reviewer comment: “It will be very important to evaluate the 
mechanisms that are developed for engine conditions. The time 
rate of change of pressure and temperature in an engine are 
important aspects of the mechanism evaluation.” 

� Response: During the last year, we have done extensive modeling 
of the Sandia HCCI engine under boosted conditions with several 
fuel types. 
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Barriers


�	 Increases in engine efficiency and decreases in engine emissions
are being inhibited by an inadequate ability to simulate in-cylinder 
combustion and emission formation processes 
•	 Our project is improving the ability to simulate these processes 

by developing better and more complete detailed chemical 
kinetic models of gasoline, diesel and alternative fuels 
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Approach


�	 Develop chemical kinetic reaction models for each individual fuel component of 
importance for fuel surrogates of gasoline, diesel, and alternative fuels. 

�	 Combine mechanisms for representative fuel components to provide surrogate 
models for practical fuels 
• diesel fuel 
• gasoline (HCCI and/or SI engines) 
• Oil-sand derived fuels 
• Biodiesel and oxygenated fuels 

�	 Reduce mechanisms for use in CFD and multizone HCCI codes to improve the 
capability to simulate in-cylinder combustion and emission formation/destruction 
processes in engines 

�	 Use the resulting models to simulate practical applications in engines, including 
diesel, HCCI and spark-ignition, as needed 

�	 Iteratively improve models as needed for applications 
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Technical Accomplishment Summary


�	 Improving models for diesel 
engines 
•	 Completed of high and low 

temperature, C8-C16 
mechanism 

�	 Improving models for HCCI
engines 
•	 Simulated HCCI engine

experiments at Sandia using
new chemical kinetic 
mechanisms for gasoline
surrogate, cyclohexane and
PRF fuels. 

�	 Completed validation of base
chemistry up to n-heptane and iso­
octane 

�	 Improving models for bio-derived,
renewable fuel 
•	 Validated both low and high

temperature mechanism for
biodiesel surrogate 
− methyldecanoate 

O 

O 
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We have developed a model for n-hexadecane, a primary 
reference fuel for diesel 

� One of the two primary reference fuels for Recommended surrogate for diesel 
diesel ignition properties (cetane number) fuel (Farrell et al., 2007): 

• n-hexadecane 


• 2,2,4,4,6,8,8 heptamethylnonane


�	 High and low temperature portion of the 
n-hexadecane mechanism complete 

•	 Low temperature kinetics most important 
for diesel and HCCI engines: Low 
temperature mechanism developed next. 

•	 First-ever complete set of high and low 
temperature kinetic mechanisms for all  C8 
- C16 n-alkanes 

n-hexadecane 

1-methylnapthalene 

n-decylbenzene 

heptamethylnonane 

7LLNL-PRES-401329 Option:Additional Information 

Lawrence Livermore National Laboratory 



n-Hexadecane model behavior agree well with experiments
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Curves: Model 

Symbols: Ristori  et al. 2001 

In stirred reactor 
at 1 atm, 
1000-1250K, 
φ=1.5 



n-Decane model agrees well with experiments under engine-
type conditions 

In stirred reactor at 

10 atm


750-1150K

φ=1
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In shock tube at 
80 atm 

800-1100K 
φ=1 

Filled: Model 

Open: Zhukov et al. 

Curves: Model 

Symbols: Bales-Gueret et al. 1992 



We have developed a low and high temperature mechanism 
for methyldecanoate, a surrogate for biodiesel: 

Methyldecanoate represents key features of biodiesel components:
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Soy and rapeseed 
oil components: 

O 

Omethyldecanoate 
3000 species 
8000 reactions 



Biodiesel surrogate model of methyl decanoate results compare well 

with experiments at engine type conditions (10 atm and 790-1040K)
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Partial burn, HCCI experiments on Methyl decanoate 
(Szybist et al.) 

� Motored engine with adjustable compression ratio (no spark) 
� Increase compression ratio until autoignition occurs 
� Measure species in exhaust of engine 

a 

l 
s 

θ 

TDC� Assumptions required for simulations: 
• temperature at bottom dead center adjusted L 
•	 In-cylinder gases are homogeneous 

BDC• No heat losses 
� Chemkin 4.1 code 
� Residual gases taken in account by computing 
several cycles 
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Validate approach with partial burn, HCCI of n-heptane


Test with 
n-heptane 

Mechanism 
developed in 

1998 

Mature and 
well 

validated 
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Developed reduced methyl decanoate mechanism for 
use in reacting flow codes 

3036 species 125 species 

8555 reactions 712 reactions 
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solid lines: nc7_44
dashed lines: nc7_2

1.79% nC7H16, φ = 1.0 in air, P5 = 13 bar

Solid lines: ic8_44
Dashed lines: ic8_2

1.65% iC8H18, φ = 1.0 in air, P5 = 40 bar

τ

Improved base chemistry give better model predictions at 
engine conditions: 

n-heptane in shock tube 
13 atm 

650-1250K 
stoichiometric 

Iso-octane in shock tube 
13 atm 

1000-1300K 
stoichiometric 
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Lawrence Livermore National Laboratory

Mechanisms are available on LLNL website and by email
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Modeling of HCCI engine to understand behavior at high boost 
pressure 
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Technical Publications during FY08


�	 C. K. Westbrook, W. J. Pitz, O. Herbinet, H. J. Curran and E. J. Silke, "A Detailed Chemical Kinetic Reaction Mechanism For 
n-Alkane Hydrocarbons From n-Octane to n-Hexadecane," Combust. Flame (2008) Submitted. 

�	 E. J. Silke, W. J. Pitz, C. K. Westbrook, M. Sjöberg and J. E. Dec, “Understanding the Chemical Effects of Increased Boost 
Pressure under HCCI Conditions”, 2008 SAE World Congress, Detroit, MI, SAE 2008-01-0019, 2008. 

�	 R. P. Hessel, D. E. Foster, S. M. Aceves, M. L. Davisson, F. Espinosa-Loza, D. L. Flowers, W. J. Pitz, J. E. Dec, M. Sjöberg 
and A. Babajimopoulos, Modeling Iso-octane HCCI using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed 
Speciation Data over a Range of Lean Equivalence Ratios, 2008 SAE World Congress, SAE 2008-01-0047, Detroit, MI, 
2008. 

�	 Sakai, Y., Ozawa, H., Ogura, T., Miyoshi, A., Koshi, M. and Pitz, W. J., "Effects of Toluene Addition to the Primary Reference 
Fuel at High Temperature," SAE Commercial Vehicle Engineering Congress & Exhibition, Chicago, IL, 2007. 

�	 Y. Sakai, A. Miyoshi, M. Koshi and W. J. Pitz, “A Kinetic Modeling Study on the Oxidation of Primary Reference Fuel– 
Toluene Mixtures Including Cross Reactions between Aromatics and Aliphatics”, Proc. Combust. Inst., Montreal, Canada, 
submitted, 2008. 

�	 O. Herbinet, W. J. Pitz and C. K. Westbrook, "Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate," 
Combust. Flame (2008) submitted. 

�	 K. Seshadri, T. Lu, O. Herbinet, S. Humer, U. Niemann, W. J. Pitz and C. K. Law, "Ignition of Methyl Decanoate in Laminar 
Nonpremixed Flows," Proceedings of The Combustion Institute (2008) Submitted. 

�	 C. K. Westbrook, W. J. Pitz, P. R. Westmoreland, F. L. Dryer, M. Chaos, P. Osswald, K. Kohse-Hoinghaus, T. A. Cool, J. 
Wang, B. Yang, N. Hansen and T. Kasper, “A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small 
Alkyl Esters in Laminar Premixed Flames”, Proc. Combust. Inst., Montreal, Canada, submitted, 2008. 
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Industry Collaboration


�	 Our major current industry collaboration is via the DOE working groups on 
HCCI and diesel engines. 
•	 All results presented at Advanced Engine Combustion Working group

meetings (Industry, National labs, Univ. of Wisc.) 
•	 Collaboration with Magnus Sjöberg and John Dec at Sandia on HCCI

engine experiments 
•	 Collaboration with Randy Hessel at Univ. of Wisconsin on CFD 


simulations.

•	 Collaboration with Jim Szybist (ORNL) and Andre Boehman (Penn State). 

�	 Second interaction is participation with universities 
•	 Collaboration with C. K. Law’s group, Princeton University on mechanism 

reduction 
•	 Collaboration with Curran at National Univ. of Ireland 
•	 Collaboration with Prof. Koshi at University of Tokyo on toluene. 

�	 Participation in other working groups with industrial representation 
•	 Fuels for Advanced Combustion Engines (FACE) Working group 
•	 Surrogate fuel working group with representatives from industry (Exxon,

Caterpillar, Chevron, United Technologies) 

20LLNL-PRES-401329 Option:Additional Information 

Lawrence Livermore National Laboratory 



Activities for Next Fiscal Year


�

2,2,4,4,6,8,8 hepta-methyl-nonane 

�	 Further modeling of enhanced surrogate fuels with comparisons to 
engine experiments 
•	 Improved n-heptane, iso-octane, toluene surrogate model for 

gasoline 
�	 Longer term: 

•	 Large aromatic for diesel fuel 

•	 Assess the effect of molecular structure by examining a 
biodiesel surrogate component with a double bond 

Kinetic model for large iso-alkanes present in Diesel fuel: 
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Summary


�	 Approach to research 
•	 Continue development of surrogate fuel mechanisms to improve 

engine models for HCCI and diesel engines 
�	 Technical accomplishments: 

•	 Completed reaction mechanism for the high and low temperature 
oxidation of n-hexadecane 

�	 Collaborations/Interactions 
•	 Collaboration through AEC working group with industry.  Many

collaborators from National Labs and Universities. 
�	 Plans for Next Fiscal Year 

•	 Complete low/high temperature mechanism to represent large
iso-alkanes in a diesel surrogate fuel: 2,2,4,4,6,8,8 hepta-methyl 
nonane, diesel reference fuel 
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