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Purpose of WorkPurpose of Work

Develop, characterize, evaluate and 
optimize lean NOx trap catalyst and 
reactor designs with goal to improve the 
emissions performance and fuel efficiency 
of lean burn and diesel vehicles.
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Lean NOx Trap:  Lean NOx Trap:  
Adsorptive Catalytic ReactorAdsorptive Catalytic Reactor

Challenges
Maximize NOx conversion
Maximize reductant conversion 
Minimize fuel penalty 
Minimize deactivation
Achieve robust control 
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Major Technical Barriers & Challenges Major Technical Barriers & Challenges 

Lean NOx Trap: A complex periodic catalytic 
reactor that holds promise for lean NOx reduction 
in diesel exhaust 

Transient storage & reduction produces multiple 
products on multi-functional catalyst
Reduction occurs at interface of precious metal & 

storage components
Nonlinear coupling between chemistry & transport

Development of a predictive LNT reactor model 
containing main chemistry & transport processes 
is critical for understanding, design, & operation
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Project ObjectivesProject Objectives
Objective 1:  Carry out fundamental studies 
of the transient kinetics of LNT regeneration
Objective 2:  Evaluate and compare the 
effect of different reductants on LNT 
performance
Objective 3:  Incorporate the kinetics 
findings and develop and analyze a first-
principles based predictive LNT model for 
design and optimization
Objective 4:  Test the new LNT designs in 
UH heavy-duty diesel dynamometer facility
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•Lean NOX Storage

•Steady-state lean NOX
reduction

•NOX storage & 
reduction (cycling)

Bench-scale Reactor 
Studies

Transient kinetics 
studies  (TAP)

Experiments
Kinetic Modeling 

• Micro-kinetics 

• Global kinetics

Modeling & Simulation

Low-dimensional models 
for optimization & control

Reactor Modeling 

• Isothermal / short 
monoliths

• Non-isothermal 
integral monoliths

Activities

• Elucidation of data

• Bifurcation analysis

Implementation / 
Optimization of LNTs

• Develop predictive 
LNT models

• Optimize LNT design 

• Integrate into 
onboard control system

Vehicle Dynamometer 
Testing

Research ApproachResearch Approach
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Facilities Utilized in StudyFacilities Utilized in Study
Bench-scale reactor system for atmospheric pressure 

steady-state & cyclic operation studies of NSR chemistries 
on monoliths & powders 
TAP reactor system for ultrahigh vacuum flow transient 
studies of NSR chemistries on powders & monoliths

Catalyst characterization equipment for PM 
dispersion and particle size, surface area, etc.

Computer workstations for microkinetic and LNT 
modeling studies

Heavy-duty chassis dynamometer system for 
evaluation of diesel aftertreatment devices installed on 
vehicles (existing) and advanced bench-scale system
utilizing exhaust side stream (under construction)
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Accomplishments to DateAccomplishments to Date

TAP reactor studies
Carried out study of NO decomposition and 

NO/H2 pump/probe on Pt/Al2O3 and 
Pt/Ba/Al2O3 catalysts 
Developed phenomenological understanding 

of role of Pt/Ba coupling during storage and 
reduction
Identified conditions leading to N2, N2O, and

NH3 formation
Incorporated monolith catalyst into TAP 

reactor 
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Temporal Analysis of Products (TAP)Temporal Analysis of Products (TAP)

(Reference:  P. Mills, DuPont)

Advantages of TAP

• Well characterized 
Knudsen diffusion
• Sub-millisecond time 
resolution 
• Intrinsic transient 
kinetic measurements
• Uniform catalyst 
temperature
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TAP Experiments:TAP Experiments:
NO Pulse & NO/HNO Pulse & NO/H22 PumpPump--ProbeProbe

NO pulsing probes uptake & 
decomposition

Variation of pulse intensity, spacing time (τs)

NO and H2 pump-probe  
NO & H2 pulsed alternately 
Variation of pulse intensities,
delay time (τd) , spacing time (τs)

Feed composition*

Excess NO 
Excess H2

*Basis:  NO + H2 ½ N2 + H2O
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NO Pulsing Experiments on Pt/AlNO Pulsing Experiments on Pt/Al22OO33
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TAP FindingsTAP Findings

TAP studies elucidate product distribution and 
transient kinetics for NO + H2 on Pt/Al2O3

NH3 and N2O significant byproducts
N2O, NH3, & N2 selectivities depend on 
temperature, feed composition & pulse timing
H2 serves as scavenger of surface oxygen and 
surface nitrogen
Micro-kinetic modeling studies ongoing to predict 
data trends
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Mechanistic Picture of Mechanistic Picture of 
NO + HNO + H22 on Pt/Alon Pt/Al22OO33
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Mechanistic Picture of Mechanistic Picture of 
NO + HNO + H22 on Pt/on Pt/ /Al/Al22OO33
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Accomplishments to Date, cont.Accomplishments to Date, cont.
Bench-scale reactor studies

Comprehensive study of steady-state operation using H2
as reductant on model Pt/Al2O3, Pt/BaO/Al2O3, and 
BaO/Al2O3  catalysts  

Identified major reaction pathways to N2, N2O, and NH3

Compared activity of Pt, Pt/BaO and BaO
Provided basic data for development of microkinetic model

Comprehensive study of cyclic operation with H2 as 
reductant on Pt/Al2O3 , Pt/BaO/Al2O3 , BaO/Al2O3  catalysts

Quantified cycle-averaged conversions & and selectivities as 
function of feed composition. lean/rich cycling, and temperature
Conducted varied-length reactor experiments to determine how 
ammonia is formed and consumed
Provided basic data for evaluation of transient lean NOx trap



2/26/08 Harold_UHouston DOE Merit Review  18

BenchBench--Scale Reactor SystemScale Reactor System
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Effluent Composition versus Time:  Effluent Composition versus Time:  
Storage and ReductionStorage and Reduction
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Regeneration of Stored NOx:  Regeneration of Stored NOx:  
Effluent Composition versus TimeEffluent Composition versus Time
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NOxNOx StorageStorage
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CycleCycle--Averaged ResultsAveraged Results
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Varied Monolith Length ExperimentsVaried Monolith Length Experiments
Approach

Divide original monolith into progressively 
smaller sections
Replicate experiments to generate spatio-

temporal concentration profiles
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Effect of Length on Ammonia Effect of Length on Ammonia 
Production:  Aerobic PulseProduction:  Aerobic Pulse

Lean: 500 ppm NO and 5% O2 (60s); 
Rich: 4.35% H2 and  1.5% O2 (10s); SN,P=0.7 
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Effect of Length on Ammonia Effect of Length on Ammonia 
Production:  Aerobic PulseProduction:  Aerobic Pulse

Lean: 500 ppm NO and 5% O2 (60s); 
Rich: 4.35% H2 and  1.5% O2 (10s); SN,P=0.7 
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Effect of Length on Ammonia Effect of Length on Ammonia 
Production:  Aerobic PulseProduction:  Aerobic Pulse

Lean: 500 ppm NO and 5% O2 (60s); 
Rich: 4.35% H2 and  1.5% O2 (10s); SN,P=0.7 
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Effect of Length on Ammonia Effect of Length on Ammonia 
Production:  Aerobic PulseProduction:  Aerobic Pulse

Lean: 500 ppm NO and 5% O2 (60s); 
Rich: 4.35% H2 and  1.5% O2 (10s); SN,P=0.7 
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Effect of Length on Ammonia Effect of Length on Ammonia 
Production:  Aerobic PulseProduction:  Aerobic Pulse

Lean: 500 ppm NO and 5% O2 (60s); 
Rich: 4.35% H2 and  1.5% O2 (10s); SN,P=0.7 
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Rapid Pulsing ExperimentsRapid Pulsing Experiments

Lean: 500 ppm NO and 5% O2 (60s); 
Rich: 4% H2 or 2.67% NH3 (3.33s);
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Lean: 500 ppm NO and 5% O2 (60s); 
Rich: 4% H2 or 2.67% NH3 (3.33s);

Rapid Pulsing ExperimentsRapid Pulsing Experiments
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Summary (NO/HSummary (NO/H22/NH/NH33 System)System)

H2 and NH3 serve as reductants during NSR
H2 is a superior reductant under steady-state conditions 
and below 380 oC during cycling

Formation of N2 can occur through four different 
reaction routes; two primary routes 

Direct :  H2 + NOx  N2

Indirect: H2 + NOx  NH3 and  NH3 + NOx N2

Regeneration initially feed rate limited by H2

Rate limiting step switches from a feed rate limited 
state to one in which the supply of NOx from the 
storage phase to Pt is limiting 
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Picture of NSR With HPicture of NSR With H2 2 as Reductantas Reductant
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Accomplishments to Date, cont.Accomplishments to Date, cont.
Kinetic & Reactor Modeling

Microkinetic modeling
Developed microkinetic model for H2/NO/O2 on Pt 
based on TAP & bench-scale data trends
Incorporated microkinetic model into TAP model 
simulation for further upgrading

NOx trap reactor modeling  
Incorporated NO oxidation and storage with 
propylene as reductant; simulated multiple states 
during steady state & cyclic operation 
Incorporated microkinetic model into short 
monolith model; predicted most features of steady-
state H2/NO on Pt from bench-scale study
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LNT Monolith Model FeaturesLNT Monolith Model Features
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Reaction System Mechanism:  Reaction System Mechanism:  
SteadySteady--State NO + HState NO + H22 on Pt/Alon Pt/Al22OO33
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SteadySteady--State NO + HState NO + H2 2 on Pt/BaO:  on Pt/BaO:  
Effect of TemperatureEffect of Temperature
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Selectivities vs.Selectivities vs.
TemperatureTemperature

Main trends in 
data captured by 
model
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Next Steps:  Year 3 of 4Next Steps:  Year 3 of 4
Experiments

Conduct bench-scale and TAP experiments on 
additional catalyst types

Effect of Pt dispersion for Pt/BaO catalysts
Systematic Pt/Ba interfacial perimeter for Pt/BaO catalysts
Effect of Rh in Pt/Rh/Ba catalysts 

Modeling
Further upgrade microkinetic model through specific 
kinetic measurements in bench-scale & TAP reactors
Incorporate upgraded kinetic model into integral 
transient LNT monolith reactor
Use LNT model with microkinetics to investigate 
different NOx trap operating strategies and designs
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Synergistic StudiesSynergistic Studies
State of Texas/BASF Catalysts LLC (Engelhard Inc.)

State of Texas/Engelhard project ($200K funding; >$50K in-kind)
BASF provided all catalysts used in study

Ford Motor Company (Chemical Engineering group)
$100K funding over last three years
Develop computationally efficient “low dimensional” NOx trap 

model for design and on-vehicle use

City of Houston:  5-year project ($3.8 million 2002-2008):  
UH Diesel   Emission Research & Testing  Facility

State of Texas (TCEQ; $8.8 - $10.3 million; 2 years)
Expansion of facility into “Texas Diesel Testing & Research Center”
in support of “New Technology Research & Development” (NTRD) 
program focused on diesel retrofit technologies for NOx and 
particulates reduction 
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HeavyHeavy--Duty Chassis Duty Chassis 
Dynamometer FacilityDynamometer Facility

Technology verification/testing
Demonstration projects
Elements:

500HP AC Chassis Dyno (Burke Porter)
Partial Flow Dilution Tunnel (Horiba)
Raw exhaust gas analyzer (Horiba)
FTIR exhaust gas analyzer (MKS)
Exhaust Flow meter (Rosemount)
Fuel column
Data Acquisition/Control software
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Active CollaborationsActive Collaborations
BASF Catalysts LLC (formerly Engelhard Inc.)

Dr. Stan Roth, Dr. C.Z. Wan
Builds off State of Texas / Engelhard funded project
10 refereed publications on LNTs from 2004-2006
BASF provided several series of model catalysts:    

Pt, Pt/Ba, Rh, Pt/Rh/Ba 

Ford Motor Company
Dr. Bob McCabe, Dr. Joseph Theis
Development of low-dimensional models of TWC 

and LNT converters for on-vehicle use 
Regular technology exchanges
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SummarySummary
Growth of diesel-powered vehicles requires 
cost-effective & reliable lean NOx reduction 
Key hurdle to application of LNT is its 
complexity in terms of periodic operation   
Multi-faceted experimental & modeling:   
Focus on building mechanistic understanding 
through bench-scale and TAP experiments
Project on track  

Predictive LNT reactor model with microkinetics
Year 3 plans will provide important information 
about chemistry/kinetics at Pt/Ba interface
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Refereed PublicationsRefereed Publications
Task (a)  Kinetic Models for NOx storage  and reduction on Pt/Rh/Ba

Paper 1: Medhekar, V., V. Balakotaiah, and M.P. Harold, “TAP Study of NOx Storage 
and Reduction on Pt/Al2O3 and Pt/Ba/Al2O3,” Catalysis Today, 121, 226-236  (2007).
Paper 3: Xu, J., R.D. Clayton, V. Balakotaiah and M.P. Harold, “Experimental and 
Microkinetic Modeling of Steady-State NO Reduction by H2 on Pt/BaO/Al2O3 Monolith 
Catalysts,” Appl. Catal. B. Environmental, 77, 395-408 (2008). 
Paper 7: Kumar, A., V. Medhekar, M.P. Harold, and V. Balakotaiah, “NOx Reduction 
Studies on Pt/Al2O3 Powder and Monolith Catalyst using Temporal Analysis of Products,”
Appl. Catal. B. Environmental, Catalysis Today, to be submitted (March, 2008).

Task (b) Bench scale studies of NOx reduction & NSR 
Paper 2: Sharma, M., R.D. Clayton, M.P. Harold, and V. Balakotaiah, “Multiplicity in Lean 
NOx Traps,” Chem. Engng. Science, 62,  5176-5181 (2007). 
Paper 4: Clayton, R.D.., M.P. Harold, and V. Balakotaiah, “Selective Catalytic Reduction 
of NO by H2 in O2 on Pt/BaO/Al2O3 Monolith NOx Storage Catalysts,” Appl. Catal. B. 
Environmental, to appear (2008):  doi:10.1016/j.apcatb.2007.11.038.
Paper 5: Clayton, R.D.., M.P. Harold, and V. Balakotaiah, “NOx Storage and Reduction 
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