

Benchmarking of Competitive Technologies

Tim Burress
Oak Ridge National Laboratory
May 21, 2009

Project ID: apep_03_burress

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start: FY04

Finish: Ongoing

Budget

- Total project funding
 - DOE: 100%
- Funding received in FY08
 - \$582K
- Funding received in FY09
 - \$472K
- Funding requested in FY10
 - \$547K

Barriers

- Integrating ORNL developed controller with OEM components
- Adapting novel fixture to test cell

Partners

Argonne National Laboratory

Objectives

- Conduct End-of-Life studies upon 2004 Prius
 - Evaluate components from fleet vehicles operated for more that 165,000 miles
 - Observe impacts of extended operation within vehicle
- Benchmark 2010 Prius (or other state-of-the art HEV technology, if unavailable)
 - Assess design, packaging, and fabrication characteristics from intensive disassembly of subsystems
 - Determine techniques used to improve specific power and/or power density
 - · Reveal compositions and characteristics of key components
 - Trade-offs (magnet strength vs coercivity)
 - General cost analysis
 - Examine performance and operational characteristics during comprehensive testcell evaluations
 - Establish realistic power rating (18 seconds)
 - Provide detailed information regarding time-dependent and condition-dependent operation
 - Develop conclusions from evaluations and assessments
 - Compare results with other HEV technologies
 - Identify new areas of interest
 - Evaluate advantages and disadvantages of design changes
 - Example: Complexity of LS 600h double sided cooling system

Oak Ridge National Laboratory 3

Milestones

2008 Oct	Nov	Dec	2009 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	2009 Sep
Select system for testing		Conduct End-of-Life benchmarking studies upon 2004 Prius					Conduct intensive benchmarking studies upon recently released HEV subsystems				
								ubsystem packaging			
							Develop algorithr	control m/interfac	e		
								fabricate/ire subsyst	instrument ems		
								Benchm	ark testing	g of subsys	tems
								Destruc	tive assess	sments	
											Issue results

Decision Point: Selection of subsystems to be evaluated in FY09 based upon input from DOE and EETT

Oak Ridge National Laboratory

Approach

Technical Accomplishments (1)

- LS 600h Power Converter Unit teardown
 - Comparison of size and power capability
 - Comparison of power electronics design and layout
- LS 600h power module much more advanced
 - Double sided power module and cooling infrastructure

Technical Accomplishments (2)

- Lexus LS 600h transaxle teardown
 - Evaluation of drive characteristics
 - Planetary/drive gears, motor volume, etc
 - Assessment of cooling system functionality
 - Oil flow and heat exchange

Motor rotor lamination: 2007 Camry vs 2008 LS600h

Technical Accomplishments (3)

LS 600h efficiency and continuous test results

- Steady state efficiency map
- Continuous duration
 - Dependent upon speed, coolant temperature, and stator temperature limitations
 - Camry much higher than Prius
 - Similarities between LS 600h and Camry

Future Work

- Benchmarking efforts will focus on technologies of interest to DOE, the Electrical and Electronics Technical Team, and Vehicle Systems Analysis Technical Team
- Comprehensive analyses of subject technologies
 - Assess design, packaging, and fabrication characteristics from intensive disassembly of subsystems
 - Determine techniques used to improve specific power and/or power density
 - Reveal compositions and characteristics of key components
 - Trade-offs (magnet strength vs coercivity)
 - General cost analysis
 - Examine performance and operational characteristics during comprehensive test-cell evaluations
 - Establish realistic power rating (18 seconds)
 - Provide detailed information regarding time-dependent and condition-dependent operation
 - Develop conclusions from evaluations and assessments
 - Compare results with other HEV technologies
 - Identify new areas of interest
 - Evaluate advantages and disadvantages of design changes
 - Example: Complexity of LS 600h double sided cooling system

Oak Ridge National Laboratory 9

Summary

- Various drive systems subassemblies fully assessed (Prius, Accord, Camry, LS 600h)
 - Power density and specific power determined
 - Design specifications validated

Design Feature	2008 LS 600h	2007 Camry	2006 Accord	2004 Prius							
Motor-related Technology											
Motor peak power rating	110 kW	70kW	12.4 kW	50 kW							
Motor peak torque rating	300 Newton meters (Nm)	270 Nm	136 Nm	400 Nm							
Rotational speed rating	10,230 rpm	14,000 rpm	6,000 rpm	6,000 rpm							
Power electronics-related Technology											
IPM Cooling	Double-sided infrastructure, water/glycol loop	Heat sink with water/glycol loop	Air-cooled heat sink	Same as Camry							
Bi-directional DC-DC converter output voltage	~288-650 Vdc	250-650 Vdc	N/A	200-500 Vdc							
Bi-directional DC-DC converter power rating	36.5 kW	30 kW	N/A	20 kW							
High voltage (HV) Ni MH bettery	288 V, 6.5 Ah,	244.8 V, 6.5 Ah,	144V, 6.5 Ah	201.6 V, 6.5 Ah,							
High-voltage (HV) Ni-MH battery	36.5 kW	30 kW	13.8 kW	20 kW							