Direct Cooled Power Electronics Substrate

Randy H. Wiles
Oak Ridge National Laboratory
May 21, 2009

Project ID # apep_09_wiles

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

• Project start – Oct. 2007
• Project end – Sept. 2010
• Percent complete – 55%

Budget

• Total project funding
 – DOE 100%
• FY08 - $349K
• FY09 - $428K
• FY10 - $600K

Barriers

• Barriers
 – Sealing of substrates – Protection of electronics from water/ethylene glycol (WEG) coolant
 – Thermal growth – Stress levels inside substrate under thermal load
 – Strength degradation – Strength of ceramic substrate when in contact with flowing WEG

• Vehicle Technology Program Targets
 – DOE 2015 targets: 105°C Coolant
 – DOE 2015 target: 12 kW/l

Partners

• CoorsTek – Ceramic Fabrication
• Aegis, Inc. – Substrate Plating
• Orthodyne Electronics – Ribbon Bonds
• NBE Tech., LLC. – Chip Soldering/Sintering
Objectives

• **High Temperature Coolant** - Develop a direct-bonded copper (DBC) substrate design to enable the use of silicon devices with 105°C water/ethylene glycol (WEG) coolant

• **Volume Reduction** – Unique substrate design allows for the maximum surface area to be utilized within the smallest geometrical volume.

• **Weight Savings** – A weight reduction of approximately 3 kg can be achieved by the removal of the traditional base plate and heat sink.

• **Power Densities:**
 - ~8 kW/l when using lower thermal conductivity ceramic substrates, and with a significant cost savings
 - ~14 kW/l when using high thermal conductivity ceramic substrates, but at a compromised cost
Milestones

• FY08
 • Candidate materials and processing methods for the substrate design were identified; ceramic materials for optimum heat transfer were determined.
 • Design parameters for computer models were established:
 • Determined appropriate thermal load for 3-D simulations.
 • Justified the number of chips to use for specific designs.
 • Created the metrics needed for a successful design.
 • Thermal finite element analysis (FEA) results were obtained on 5 designs
 • Structural FEA results were completed on the preferred designs – Go / No-Go decision was favorable based on both structural and thermal results.
 • Preliminary results of the compatibility of ceramic substrates with WEG shows
 • Aluminum nitride (AlN) material not feasible.
 • Aluminum oxide (Al₂O₃) material is inert to WEG (high purity).
 • Silicon carbide (SiC) and silicon nitride (Si₃N₄) material is inert to WEG.

• FY09
 • Ceramic substrates have been fabricated, metalized and chips have been soldered into place
 • Pressure drops in the coolant channels containing the thermal enhancement material were evaluated
 • Single module testing completed August 09 – Go / No-Go decision will be favorable if testing results are comparable to FEA results.

WEG impingement on AlN Surface Shows Evidence of Chemical Reaction. Such a Reaction Can Enable Erosion.
Technical Approach

• Finalize design requirements for a single leg module:
 — Perform final thermal finite element simulations on two substrate designs.
 — Compare FY09 test results with the final thermal finite element projections.

• Assemble the single leg module:
 — Work with manufacturer to produce ceramic substrates.
 — Finalize substrate assembly (including copper cladding, chip sintering, wire bonding, etc.).

• Test assembled module:
 — Install assembled module in test apparatus.
 — Test assembled module using 105°C WEG coolant.
 — Assess test results.
 — Prepare final design and testing report:
 — Include proposed inverter design and module test results in the Vehicle Technologies Annual Report.
Technical Accomplishments

- FY09 testing incorporated the fabrication and assembly of designs 4 and 5. These substrate designs were metalized with copper, chips are soldered into position and ribbon bonds will be applied.
- Collaborative efforts include:
 - Aegis Technology is performing the brazing/metallization of the substrates and Ni/Au plating.
 - Chips were obtained from Infineon and Semikron.
 - Soldering/sintering of the chips will be a collaborative effort between NBE Tech., LLC. and ORNL.
 - Ribbon bonds will be applied by Orthodyne Electronics.
Future Work

- **Finalize design requirements for a complete inverter:**
 - Complete buss design and fabricate components for the inverter assembly.
- **Assemble the complete inverter:**
 - Fabricate the gate card and associated hardware for inverter testing.
 - Fabricate coolant flow headers.
 - Finalize substrate assembly (including copper cladding, plating copper substrate, chip sintering, wire bonding, etc.).
- **Test assembled inverter:**
 - Install assembled inverter in test apparatus.
 - Test assembled inverter using 105°C WEG coolant.
 - Assess test results.
Summary

- Candidate materials and processing methods for the substrate design were identified; ceramic materials for optimum heat transfer were determined.
- Design parameters for computer models were established.
- Thermal finite element analysis (FEA) results were obtained on 5 designs.
- Preliminary results of the compatibility of ceramic substrates with WEG shows Aluminum Nitride was not feasible. High purity Aluminum Oxide, Silicon Carbide and Silicon Nitride are all inert to Water/Ethylene Glycol.
- Ceramic substrates have been fabricated, metalized and chips have been soldered into place.
- Pressure drops in the coolant channels containing the thermal enhancement material were evaluated.
- Single module testing completed August 09 – Go / No-Go decision will be favorable if testing results are comparable to FEA results.
- Fabrication and assembly of a prototype single leg design is complete.
- Test prototype using 105°C Water/Ethylene Glycol coolant June 09.
- Review testing results, complete a preliminary inverter design, and evaluate the design based on the Vehicle Technology Program targets.
- Vehicle Technology Program targets addressed:
 - DOE 2015 target: 105°C Coolant
 - DOE 2015 target: 12 kW/l